Exam 16: Series and Taylor Polynomials Web

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Write an expression for the nth term of the sequence 13,29,427,881, K\frac { 1 } { 3 } , \frac { 2 } { 9 } , \frac { 4 } { 27 } , \frac { 8 } { 81 } , \mathrm {~K} .

Free
(Multiple Choice)
4.8/5
(32)
Correct Answer:
Verified

A

Find the limit of the following sequence. an=1+(1)na _ { n } = 1 + ( - 1 ) ^ { n }

Free
(Multiple Choice)
4.9/5
(37)
Correct Answer:
Verified

E

Use the Ratio Test to determine the convergence or divergence of the series n=0(6)n2nn!\sum _ { n = 0 } ^ { \infty } \frac { ( - 6 ) ^ { n } 2 ^ { n } } { n ! } .

Free
(Multiple Choice)
4.9/5
(39)
Correct Answer:
Verified

A

Use a symbolic differentiation utility to find the Taylor polynomials (centred at zero) of degrees (a) 2, (b) 4, (c) 6, (d) 8. f(x)=11+x2f ( x ) = \frac { 1 } { 1 + x ^ { 2 } }

(Multiple Choice)
4.8/5
(34)

Use Newton's Method to approximate the zero(s) of the function f(x)=x2x+1f ( x ) = x - 2 \sqrt { x + 1 } accurate to three decimal places.

(Multiple Choice)
4.8/5
(37)

Determine whether the sequence is arithmetic. If so, find the common difference. (Assume that n begins with 1.) αn=27n\alpha _ { n } = - 2 - 7 n

(Multiple Choice)
4.8/5
(34)

Find the sum of the finite geometric series. Round to the nearest hundredth. n=16(89)n\sum _ { n = 1 } ^ { 6 } \left( - \frac { 8 } { 9 } \right) ^ { n }

(Multiple Choice)
4.9/5
(28)

Use the Ratio Test to determine the convergence or divergence of the series. n=1n38n\sum _ { n = 1 } ^ { \infty } \frac { n ^ { 3 } } { 8 ^ { - n } }

(Multiple Choice)
4.8/5
(45)

Apply Taylor's Theorem to find the power series centered at c=12c = 12 for the function f(x)=exf ( x ) = e ^ { x } .

(Multiple Choice)
4.9/5
(42)

What are the next three terms in the arithmetic sequence 7,3,1,7,3 , - 1 , \ldots ?

(Multiple Choice)
4.9/5
(34)

Find the indicated nth term of the geometric sequence. 7th term: a5=481,a10=419,683a _ { 5 } = \frac { 4 } { 81 } , a _ { 10 } = \frac { 4 } { 19,683 }

(Multiple Choice)
4.9/5
(28)

Determine the convergence or divergence of the following series. Use a symbolic algebra utility to verify your result. n=042n\sum _ { n = 0 } ^ { \infty } \frac { 4 } { 2 ^ { n } }

(Multiple Choice)
4.7/5
(37)

Evaluate the series. i=14(4i+3)(3i4)\sum _ { i = 1 } ^ { 4 } ( 4 i + 3 ) ( 3 i - 4 )

(Multiple Choice)
4.8/5
(32)

The repeating decimal 0.20 . \overline { 2 } is expressed as a geometric series 0.2+0.02+0.002+0.0002+0.2 + 0.02 + 0.002 + 0.0002 + \ldots . Write the decimal 0.20 . \overline { 2 } as the ratio of two integers.

(Multiple Choice)
4.9/5
(32)

Find the limit of the following sequence. an=n225n+5a _ { n } = \frac { n ^ { 2 } - 25 } { n + 5 }

(Multiple Choice)
4.8/5
(40)

Write the first five terms of the sequence of partial sums. 2+24+29+216+225+L2 + \frac { 2 } { 4 } + \frac { 2 } { 9 } + \frac { 2 } { 16 } + \frac { 2 } { 25 } + L

(Multiple Choice)
4.7/5
(42)

Match the sequence with the graph of its first 10 terms. an=3nn+1a _ { n } = \frac { 3 n } { n + 1 }

(Multiple Choice)
4.9/5
(40)

Find the limit of the sequence an=1n9/2a _ { n } = \frac { 1 } { n ^ { 9 / 2 } } .

(Multiple Choice)
4.8/5
(33)

Approximate, to three decimal places, the x-value of the point of intersection of the graphs of f(x) and g(x). Round your answer to three decimal places. f(x)=xf ( x ) = - x g(x)=ln(x)g ( x ) = \ln ( x )  Approximate, to three decimal places, the x-value of the point of intersection of the graphs of f(x) and g(x). Round your answer to three decimal places.  f ( x ) = - x   g ( x ) = \ln ( x )

(Multiple Choice)
4.9/5
(40)

Determine the maximum error guaranteed by Taylor's Theorem with Remainder when the fifth-degree Taylor polynomial is used to approximate exe ^ { - x } in the interval [0,1][ 0,1 ] centered at 0. Round your answer to five decimal places.

(Multiple Choice)
4.9/5
(36)
Showing 1 - 20 of 127
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)