Exam 18: Professional Data Engineer on Google Cloud Platform
Exam 1: Google AdWords: Display Advertising122 Questions
Exam 2: Google AdWords Fundamentals153 Questions
Exam 3: Associate Android Developer86 Questions
Exam 4: Associate Cloud Engineer134 Questions
Exam 5: Cloud Digital Leader91 Questions
Exam 6: Google Analytics Individual Qualification (IQ)121 Questions
Exam 7: Google Analytics Individual Qualification78 Questions
Exam 8: GSuite202 Questions
Exam 9: Looker Business Analyst388 Questions
Exam 10: LookML Developer41 Questions
Exam 11: Mobile Web Specialist13 Questions
Exam 12: Professional Cloud Architect on Google Cloud Platform118 Questions
Exam 13: Professional Cloud Developer85 Questions
Exam 14: Professional Cloud DevOps Engineer28 Questions
Exam 15: Professional Cloud Network Engineer57 Questions
Exam 16: Professional Cloud Security Engineer80 Questions
Exam 17: Professional Collaboration Engineer71 Questions
Exam 18: Professional Data Engineer on Google Cloud Platform256 Questions
Exam 19: Professional Machine Learning Engineer35 Questions
Select questions type
You are implementing several batch jobs that must be executed on a schedule. These jobs have many interdependent steps that must be executed in a specific order. Portions of the jobs involve executing shell scripts, running Hadoop jobs, and running queries in BigQuery. The jobs are expected to run for many minutes up to several hours. If the steps fail, they must be retried a fixed number of times. Which service should you use to manage the execution of these jobs?
(Multiple Choice)
4.7/5
(31)
Flowlogistic Case Study Company Overview Flowlogistic is a leading logistics and supply chain provider. They help businesses throughout the world manage their resources and transport them to their final destination. The company has grown rapidly, expanding their offerings to include rail, truck, aircraft, and oceanic shipping. Company Background The company started as a regional trucking company, and then expanded into other logistics market. Because they have not updated their infrastructure, managing and tracking orders and shipments has become a bottleneck. To improve operations, Flowlogistic developed proprietary technology for tracking shipments in real time at the parcel level. However, they are unable to deploy it because their technology stack, based on Apache Kafka, cannot support the processing volume. In addition, Flowlogistic wants to further analyze their orders and shipments to determine how best to deploy their resources. Solution Concept Flowlogistic wants to implement two concepts using the cloud: Use their proprietary technology in a real-time inventory-tracking system that indicates the location of their loads Perform analytics on all their orders and shipment logs, which contain both structured and unstructured data, to determine how best to deploy resources, which markets to expand info. They also want to use predictive analytics to learn earlier when a shipment will be delayed. Existing Technical Environment Flowlogistic architecture resides in a single data center: Databases 8 physical servers in 2 clusters - SQL Server - user data, inventory, static data 3 physical servers - Cassandra - metadata, tracking messages 10 Kafka servers - tracking message aggregation and batch insert Application servers - customer front end, middleware for order/customs 60 virtual machines across 20 physical servers - Tomcat - Java services - Nginx - static content - Batch servers Storage appliances - iSCSI for virtual machine (VM) hosts - Fibre Channel storage area network (FC SAN) - SQL server storage - Network-attached storage (NAS) image storage, logs, backups 10 Apache Hadoop /Spark servers - Core Data Lake - Data analysis workloads 20 miscellaneous servers - Jenkins, monitoring, bastion hosts, Business Requirements Build a reliable and reproducible environment with scaled panty of production. Aggregate data in a centralized Data Lake for analysis Use historical data to perform predictive analytics on future shipments Accurately track every shipment worldwide using proprietary technology Improve business agility and speed of innovation through rapid provisioning of new resources Analyze and optimize architecture for performance in the cloud Migrate fully to the cloud if all other requirements are met Technical Requirements Handle both streaming and batch data Migrate existing Hadoop workloads Ensure architecture is scalable and elastic to meet the changing demands of the company. Use managed services whenever possible Encrypt data flight and at rest Connect a VPN between the production data center and cloud environment SEO Statement We have grown so quickly that our inability to upgrade our infrastructure is really hampering further growth and efficiency. We are efficient at moving shipments around the world, but we are inefficient at moving data around. We need to organize our information so we can more easily understand where our customers are and what they are shipping. CTO Statement IT has never been a priority for us, so as our data has grown, we have not invested enough in our technology. I have a good staff to manage IT, but they are so busy managing our infrastructure that I cannot get them to do the things that really matter, such as organizing our data, building the analytics, and figuring out how to implement the CFO' s tracking technology. CFO Statement Part of our competitive advantage is that we penalize ourselves for late shipments and deliveries. Knowing where out shipments are at all times has a direct correlation to our bottom line and profitability. Additionally, I don't want to commit capital to building out a server environment. Flowlogistic's management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?
(Multiple Choice)
4.8/5
(30)
You are a head of BI at a large enterprise company with multiple business units that each have different priorities and budgets. You use on-demand pricing for BigQuery with a quota of 2K concurrent on-demand slots per project. Users at your organization sometimes don't get slots to execute their query and you need to correct this. You'd like to avoid introducing new projects to your account. What should you do?
(Multiple Choice)
4.9/5
(35)
You want to use a database of information about tissue samples to classify future tissue samples as either normal or mutated. You are evaluating an unsupervised anomaly detection method for classifying the tissue samples. Which two characteristic support this method? (Choose two.)
(Multiple Choice)
4.8/5
(31)
Your organization has been collecting and analyzing data in Google BigQuery for 6 months. The majority of the data analyzed is placed in a time-partitioned table named events_partitioned . To reduce the cost of queries, your organization created a view called events , which queries only the last 14 days of data. The view is described in legacy SQL. Next month, existing applications will be connecting to BigQuery to read the data via an ODBC connection. You need to ensure the applications can connect. Which two actions should you take? (Choose two.)
(Multiple Choice)
4.8/5
(37)
You are designing storage for two relational tables that are part of a 10-TB database on Google Cloud. You want to support transactions that scale horizontally. You also want to optimize data for range queries on non-key columns. What should you do?
(Multiple Choice)
5.0/5
(30)
Cloud Bigtable is a recommended option for storing very large amounts of ____________________________?
(Multiple Choice)
4.8/5
(33)
You used Cloud Dataprep to create a recipe on a sample of data in a BigQuery table. You want to reuse this recipe on a daily upload of data with the same schema, after the load job with variable execution time completes. What should you do?
(Multiple Choice)
4.7/5
(33)
Dataproc clusters contain many configuration files. To update these files, you will need to use the --properties option. The format for the option is: file_prefix:property=_____.
(Multiple Choice)
4.9/5
(36)
You decided to use Cloud Datastore to ingest vehicle telemetry data in real time. You want to build a storage system that will account for the long-term data growth, while keeping the costs low. You also want to create snapshots of the data periodically, so that you can make a point-in-time (PIT) recovery, or clone a copy of the data for Cloud Datastore in a different environment. You want to archive these snapshots for a long time. Which two methods can accomplish this? (Choose two.)
(Multiple Choice)
4.8/5
(40)
MJTelco Case Study Company Overview MJTelco is a startup that plans to build networks in rapidly growing, underserved markets around the world. The company has patents for innovative optical communications hardware. Based on these patents, they can create many reliable, high-speed backbone links with inexpensive hardware. Company Background Founded by experienced telecom executives, MJTelco uses technologies originally developed to overcome communications challenges in space. Fundamental to their operation, they need to create a distributed data infrastructure that drives real-time analysis and incorporates machine learning to continuously optimize their topologies. Because their hardware is inexpensive, they plan to overdeploy the network allowing them to account for the impact of dynamic regional politics on location availability and cost. Their management and operations teams are situated all around the globe creating many-to-many relationship between data consumers and provides in their system. After careful consideration, they decided public cloud is the perfect environment to support their needs. Solution Concept MJTelco is running a successful proof-of-concept (PoC) project in its labs. They have two primary needs: Scale and harden their PoC to support significantly more data flows generated when they ramp to more than 50,000 installations. Refine their machine-learning cycles to verify and improve the dynamic models they use to control topology definition. MJTelco will also use three separate operating environments - development/test, staging, and production - to meet the needs of running experiments, deploying new features, and serving production customers. Business Requirements Scale up their production environment with minimal cost, instantiating resources when and where needed in an unpredictable, distributed telecom user community. Ensure security of their proprietary data to protect their leading-edge machine learning and analysis. Provide reliable and timely access to data for analysis from distributed research workers Maintain isolated environments that support rapid iteration of their machine-learning models without affecting their customers. Technical Requirements Ensure secure and efficient transport and storage of telemetry data Rapidly scale instances to support between 10,000 and 100,000 data providers with multiple flows each. Allow analysis and presentation against data tables tracking up to 2 years of data storing approximately 100m records/day Support rapid iteration of monitoring infrastructure focused on awareness of data pipeline problems both in telemetry flows and in production learning cycles. CEO Statement Our business model relies on our patents, analytics and dynamic machine learning. Our inexpensive hardware is organized to be highly reliable, which gives us cost advantages. We need to quickly stabilize our large distributed data pipelines to meet our reliability and capacity commitments. CTO Statement Our public cloud services must operate as advertised. We need resources that scale and keep our data secure. We also need environments in which our data scientists can carefully study and quickly adapt our models. Because we rely on automation to process our data, we also need our development and test environments to work as we iterate. CFO Statement The project is too large for us to maintain the hardware and software required for the data and analysis. Also, we cannot afford to staff an operations team to monitor so many data feeds, so we will rely on automation and infrastructure. Google Cloud's machine learning will allow our quantitative researchers to work on our high-value problems instead of problems with our data pipelines. You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data. Which two actions should you take? (Choose two.)
(Multiple Choice)
4.9/5
(37)
You've migrated a Hadoop job from an on-prem cluster to dataproc and GCS. Your Spark job is a complicated analytical workload that consists of many shuffing operations and initial data are parquet files (on average 200-400 MB size each). You see some degradation in performance after the migration to Dataproc, so you'd like to optimize for it. You need to keep in mind that your organization is very cost-sensitive, so you'd like to continue using Dataproc on preemptibles (with 2 non-preemptible workers only) for this workload. What should you do?
(Multiple Choice)
4.9/5
(38)
The _________ for Cloud Bigtable makes it possible to use Cloud Bigtable in a Cloud Dataflow pipeline.
(Multiple Choice)
4.8/5
(41)
You have a data pipeline with a Cloud Dataflow job that aggregates and writes time series metrics to Cloud Bigtable. This data feeds a dashboard used by thousands of users across the organization. You need to support additional concurrent users and reduce the amount of time required to write the data. Which two actions should you take? (Choose two.)
(Multiple Choice)
4.8/5
(37)
You are designing a pipeline that publishes application events to a Pub/Sub topic. Although message ordering is not important, you need to be able to aggregate events across disjoint hourly intervals before loading the results to BigQuery for analysis. What technology should you use to process and load this data to BigQuery while ensuring that it will scale with large volumes of events?
(Multiple Choice)
4.8/5
(31)
You need to store and analyze social media postings in Google BigQuery at a rate of 10,000 messages per minute in near real-time. Initially, design the application to use streaming inserts for individual postings. Your application also performs data aggregations right after the streaming inserts. You discover that the queries after streaming inserts do not exhibit strong consistency, and reports from the queries might miss in-flight data. How can you adjust your application design?
(Multiple Choice)
5.0/5
(37)
You work for a shipping company that has distribution centers where packages move on delivery lines to route them properly. The company wants to add cameras to the delivery lines to detect and track any visual damage to the packages in transit. You need to create a way to automate the detection of damaged packages and flag them for human review in real time while the packages are in transit. Which solution should you choose?
(Multiple Choice)
4.7/5
(34)
You have enabled the free integration between Firebase Analytics and Google BigQuery. Firebase now automatically creates a new table daily in BigQuery in the format app_events_YYYYMMDD. You want to query all of the tables for the past 30 days in legacy SQL. What should you do?
(Multiple Choice)
4.9/5
(41)
The marketing team at your organization provides regular updates of a segment of your customer dataset. The marketing team has given you a CSV with 1 million records that must be updated in BigQuery. When you use the UPDATE statement in BigQuery, you receive a quotaExceeded error. What should you do?
(Multiple Choice)
4.7/5
(36)
Showing 121 - 140 of 256
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)