Exam 3: The Derivative

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Let f(x)=9xf ( x ) = \sqrt { 9 - x } Then f(x)f ^ { \prime } ( x ) does not exist if x is

(Multiple Choice)
4.9/5
(42)

The derivative of f(x)=3x21f ( x ) = 3 x ^ { 2 } - 1 at x = -1 is

(Multiple Choice)
4.9/5
(42)

Let f(x)=9xf ( x ) = \sqrt { 9 - x } Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.8/5
(41)

Let y=exsinxy = e ^ { x } \sin x Then yy\prime\prime is

(Multiple Choice)
5.0/5
(32)

The second derivative d2dx2((x21)(x+2))\frac { d ^ { 2 } } { d x ^ { 2 } } \left( \left( x ^ { 2 } - 1 \right) ( x + 2 ) \right) is

(Multiple Choice)
4.9/5
(36)

Let f(x)=4x3exf ( x ) = 4 x ^ { 3 } e ^ { x } Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
5.0/5
(33)

Let f(x)=3x+4f ( x ) = \frac { 3 } { \sqrt { x } } + 4 . Then does not exist if x is

(Multiple Choice)
4.8/5
(39)

Let f(x)=xexf ( x ) = x - e ^ { x } Then f(x)=0f ^ { \prime } ( x ) = 0 for all x in

(Multiple Choice)
4.8/5
(24)

Let f(x)=sinxexf ( x ) = \frac { \sin x } { e ^ { x } } . Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.9/5
(29)

Let f(x)=xf ( x ) = \lfloor x \rfloor Which of the following is true?

(Multiple Choice)
4.9/5
(34)

Let f(x)=4x2f ( x ) = 4 - x ^ { 2 } . Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.8/5
(30)

The slope of the tangent line to the graph f(x)=1x2f ( x ) = \frac { 1 } { x ^ { 2 } } at the point (-1,1) is

(Multiple Choice)
4.8/5
(30)

Let f(x)=85xf ( x ) = \frac { 8 } { \sqrt { 5 - x } } Then f(x)f ^ { \prime } ( x ) does not exist if x is

(Multiple Choice)
4.8/5
(39)

The derivative of f(x)=x4f ( x ) = \sqrt { x - 4 } at x = 8 is

(Multiple Choice)
4.8/5
(27)

Let f(x)=cosx2xf ( x ) = \cos x - 2 x If x[0,2π]x \in [ 0,2 \pi ] then ƒ has a horizontal tangent line for each x in

(Multiple Choice)
4.9/5
(41)

Let f(x)=x2xf ( x ) = x - \frac { 2 } { x } . Then f(x)f ^ { \prime } ( x ) does not exist if x is

(Multiple Choice)
4.7/5
(36)

Let f(x)=sinxcosxf ( x ) = \sin x \cos x Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.8/5
(33)

Let f(x)=exxf ( x ) = \frac { e ^ { x } } { x } Assuming x0,f(x)x \neq 0 , f ^ { \prime } ( x ) is

(Multiple Choice)
4.9/5
(24)

Let f(x)=4x+2f ( x ) = - 4 x + 2 . Which of the following is true?

(Multiple Choice)
4.9/5
(32)

Let f(x)=(x2)2f ( x ) = ( x - 2 ) ^ { 2 } . Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.8/5
(37)
Showing 41 - 60 of 104
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)