Exam 12: Vector Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Let a(t)=costi+sintj\mathbf { a } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } be the acceleration of an object with velocity v(t)\mathbf { v } ( t ) . If v(0)=i+j\mathbf { v } ( 0 ) = - \mathbf { i } + \mathbf { j } then v(t)\mathbf { v } ( t ) is

Free
(Multiple Choice)
4.9/5
(31)
Correct Answer:
Verified

B

The fact that dAdt\frac { d A } { d t } is a constant is used to explain

Free
(Multiple Choice)
4.8/5
(40)
Correct Answer:
Verified

E

Let r(t)=etsin(t)ietcos(t)j+(1t)2k\mathbf { r } ( t ) = e ^ { t } \sin ( t ) \mathbf { i } - e ^ { t } \cos ( t ) \mathbf { j } + ( 1 - t ) ^ { 2 } \mathbf { k } . Then the unit tangent vector T(0)\mathbf { T } ( 0 ) is

Free
(Multiple Choice)
4.7/5
(40)
Correct Answer:
Verified

D

The radius of curvature of r(t)=2ti+(t21)j\mathbf { r } ( t ) = 2 t \mathbf { i } + \left( t ^ { 2 } - 1 \right) \mathbf { j } at the point corresponding to t = 1 is

(Multiple Choice)
4.9/5
(39)

Let r(t)=etcos(t)ietsin(t)j+(2t)2k\mathbf { r } ( t ) = e ^ { t } \cos ( t ) \mathbf { i } - e ^ { t } \sin ( t ) \mathbf { j } + ( 2 - t ) ^ { 2 } \mathbf { k } Then r(0)\mathbf { r } ^ { \prime } ( 0 ) is

(Multiple Choice)
4.7/5
(29)

The reason that the eccentricity of the orbit is neither equal to nor greater than 1 is because ​

(Multiple Choice)
4.7/5
(27)

Let y=exy = e ^ { - x } . Then the curvature K at (0, 1) is

(Multiple Choice)
4.7/5
(32)

In F(t)=GmMr(t)r(t)3\mathbf { F } ( t ) = - \frac { G m M \mathbf { r } ( t ) } { \| \mathbf { r } ( t ) \| ^ { 3 } } , G represents

(Multiple Choice)
4.8/5
(34)

The normal component aN(t)a _ { \mathrm { N } } ( t ) of the acceleration of a particle moving along the curve r(t)=2tisin(t)j+cos(t)k\mathbf { r } ( t ) = 2 t \mathbf { i } - \sin ( t ) \mathbf { j } + \cos ( t ) \mathbf { k } is

(Multiple Choice)
4.8/5
(38)

The magnitude of the acceleration of a particle moving along the curve r(t)=cos(2t)i+sin(2t)j+3tk\mathbf { r } ( t ) = \cos ( 2 t ) \mathbf { i } + \sin ( 2 t ) \mathbf { j } + 3 t \mathbf { k } is

(Multiple Choice)
4.9/5
(37)

Let v(t)=sinti+costj+tk\mathbf { v } ( t ) = \sin t \mathbf { i } + \cos t \mathbf { j } + t \mathbf { k } and w(t)=sinti+costj+t3k\mathbf { w } ( t ) = \sin t \mathbf { i } + \cos t \mathbf { j } + t ^ { 3 } \mathbf { k } Then ddt(v(t)w(t))\frac { d } { d t } ( \mathbf { v } ( t ) \bullet \mathbf { w } ( t ) ) is

(Multiple Choice)
4.7/5
(24)

Let r(t)=cos(2t)isin(2t)j+4tk\mathbf { r } ( t ) = \cos ( 2 t ) \mathbf { i } - \sin ( 2 t ) \mathbf { j } + 4 t \mathbf { k } Then the unit tangent vector T(π4)\mathbf { T } \left( \frac { \pi } { 4 } \right) is

(Multiple Choice)
4.8/5
(34)

Let r(t)=2ti+sin(2t)jcos(2t)k\mathbf { r } ( t ) = 2 t \mathbf { i } + \sin ( 2 t ) \mathbf { j } - \cos ( 2 t ) \mathbf { k } Then the curvature K(t) is

(Multiple Choice)
4.8/5
(34)

Let r(t)=2ticos(t)j+sin(t)k\mathbf { r } ( t ) = - 2 t \mathbf { i } - \cos ( t ) \mathbf { j } + \sin ( t ) \mathbf { k } Then the unit normal vector n(0)\mathbf { n } ( 0 ) is

(Multiple Choice)
4.9/5
(34)

Let a(t)=9.5k\mathbf { a } ( t ) = - 9.5 \mathbf { k } be the acceleration of an object with velocity v(t)\mathbf { v } ( t ) . If v(0)=2i3k\mathbf { v } ( 0 ) = 2 \mathbf { i } - 3 \mathbf { k } then the speed v(t)\| \mathbf { v } ( t ) \| is

(Multiple Choice)
4.9/5
(36)

Let a(t)=9.5k\mathbf { a } ( t ) = - 9.5 \mathbf { k } be the acceleration of an object with velocity v(t)\mathbf { v } ( t ) . If v(0)=2i3j\mathbf { v } ( 0 ) = 2 \mathbf { i } - 3 \mathbf { j } then v(t)\mathbf { v } ( t ) is

(Multiple Choice)
5.0/5
(34)

Let r(t)=costi+sintjetk\mathbf { r } ( t ) = - \cos t \mathbf { i } + \sin t \mathbf { j } - e ^ { - t } \mathbf { k } Then r(t)\mathbf { r } ^ { \prime \prime } ( t ) is

(Multiple Choice)
4.8/5
(38)

Let a(t)=costi+sintj\mathbf { a } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } be the acceleration of an object with velocity v(t)\mathbf { v } ( t ) . If v(0)=i+j\mathbf { v } ( 0 ) = \mathbf { i } + \mathbf { j } then v(t)\mathbf { v } ( t ) is

(Multiple Choice)
4.8/5
(30)

The speed of a particle moving along the curve r(t)=eti+cos(t)jsin(t)k\mathbf { r } ( t ) = e ^ { t } \mathbf { i } + \cos ( t ) \mathbf { j } - \sin ( t ) \mathbf { k } is

(Multiple Choice)
4.7/5
(36)

Let a(t)=32k\mathbf { a } ( t ) = - 32 \mathbf { k } be the acceleration of an object with velocity v(t)\mathbf { v } ( t ) . If v(0)=i+2j+0k\mathbf { v } ( 0 ) = \mathbf { i } + 2 \mathbf { j } + 0 \mathbf { k } , then v(t)\mathbf { v } ( t ) is

(Multiple Choice)
4.8/5
(36)
Showing 1 - 20 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)