Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use an addition or subtraction formula to find the solutions of the equation that are in the interval [0,π)[ 0 , \pi ) . cos8tcos5t=sin8tsin5t\cos 8 t \cos 5 t = - \sin 8 t \sin 5 t

Free
(Multiple Choice)
4.8/5
(36)
Correct Answer:
Verified

A

Find all solutions of the equation. (cosθ1)(sinθ+1)=0( \cos \theta - 1 ) ( \sin \theta + 1 ) = 0

Free
(Multiple Choice)
4.8/5
(31)
Correct Answer:
Verified

A

Express as a sum or difference. sin7tsin2t\sin 7 t \sin 2 t

Free
(Multiple Choice)
4.7/5
(39)
Correct Answer:
Verified

D

Verify the identity. cos4t+cos5t+cos6tsin4t+sin5t+sin6t=cot5t\frac { \cos 4 t + \cos 5 t + \cos 6 t } { \sin 4 t + \sin 5 t + \sin 6 t } = \cot 5 t

(Multiple Choice)
4.9/5
(35)

Find an identical expression. arcsin(x)\arcsin ( - x )

(Multiple Choice)
4.9/5
(36)

Express as a product. cos9θcosθ\cos 9 \theta - \cos \theta

(Multiple Choice)
5.0/5
(27)

Use the formula acosBx+bsinBx=Acos(BxC)a \cos B x + b \sin B x = A \cos ( B x - C )  where A=a2+b2 and tanC=ba with π2<C<π2\text { where } A = \sqrt { a ^ { 2 } + b ^ { 2 } } \text { and } \tan C = \frac { b } { a } \text { with } - \frac { \pi } { 2 } < C < \frac { \pi } { 2 } to determine the period of f (x). f(x)=7cos12x7sin12xf ( x ) = 7 \cos 12 x - 7 \sin 12 x

(Multiple Choice)
5.0/5
(34)

Verify the identity. sinx+cosxcotx=cscx\sin x + \cos x \cot x = \csc x

(Multiple Choice)
4.9/5
(31)

Find the exact values of sin2θ,cos2θ, and tan2θ\sin 2 \theta , \cos 2 \theta , \text { and } \tan 2 \theta for the given values of 66 . secθ=12;90<θ<180\sec \theta = - 12 ; 90 ^ { \circ } < \theta < 180 ^ { \circ }

(Multiple Choice)
4.9/5
(27)

Find the solutions of the equation that are in the interval [0,2π).[ 0,2 \pi ) . cot2ucosu=cosu\cot ^ { 2 } u \cos u = \cos u

(Multiple Choice)
4.7/5
(28)

Express as a product. sin13θ+sin3θ\sin 13 \theta + \sin 3 \theta

(Multiple Choice)
4.9/5
(37)

Find all solutions of the equation. tanθ=13\tan \theta = - \frac { 1 } { \sqrt { 3 } }

(Multiple Choice)
4.8/5
(41)

Verify the identity. lnsecθ=lncosθ\ln \sec \theta = - \ln \cos \theta

(Multiple Choice)
4.7/5
(39)

Verify the identity. sinθ+sin9θcosθ+cos9θ=tan9θ\frac { \sin \theta + \sin 9 \theta } { \cos \theta + \cos 9 \theta } = \tan 9 \theta

(Multiple Choice)
4.9/5
(31)

Use the formula acosBx+bsinBx=Acos(BxC)a \cos B x + b \sin B x = A \cos ( B x - C )  where A=a2+b2 and tanC=ba with π2<C<π2\text { where } A = \sqrt { a ^ { 2 } + b ^ { 2 } } \text { and } \tan C = \frac { b } { a } \text { with } - \frac { \pi } { 2 } < C < \frac { \pi } { 2 } to determine the amplitude of f (x). f(x)=2cos4x2sin4xf ( x ) = 2 \cos 4 x - 2 \sin 4 x

(Multiple Choice)
4.9/5
(30)

Verify the identity. sinx+cosxcotx=cscx\sin x + \cos x \cot x = \csc x

(Multiple Choice)
4.8/5
(39)

A golfer, centered in a b = 40-yard-wide straight fairway, hits a ball a = 230 yards. Approximate the largest angle the drive can have from the center of the fairway if the ball is to stay in the fairway (see the figure). Round the answer to the nearest hundredth. A golfer, centered in a b = 40-yard-wide straight fairway, hits a ball a = 230 yards. Approximate the largest angle the drive can have from the center of the fairway if the ball is to stay in the fairway (see the figure). Round the answer to the nearest hundredth.

(Multiple Choice)
4.9/5
(33)

Verify the identity. 4cos3xcos6xsin9x=sin3x+sin14x+sin19x4 \cos 3 x \cos 6 x \sin 9 x = \sin 3 x + \sin 14 x + \sin 19 x

(Multiple Choice)
4.8/5
(38)

Use the graph of f to find the simplest expression g(x) such that the equation f (x) = g (x) is an identity. f(x)=sin4t+sin5t+sin6tcos4t+cos5t+cos6tf ( x ) = \frac { \sin 4 t + \sin 5 t + \sin 6 t } { \cos 4 t + \cos 5 t + \cos 6 t }  Use the graph of f to find the simplest expression g(x) such that the equation f (x) = g (x) is an identity.  f ( x ) = \frac { \sin 4 t + \sin 5 t + \sin 6 t } { \cos 4 t + \cos 5 t + \cos 6 t }

(Multiple Choice)
4.7/5
(29)

Verify the identity. tan2xsecx+1=1cosxcosx\frac { \tan ^ { 2 } x } { \sec x + 1 } = \frac { 1 - \cos x } { \cos x }

(Multiple Choice)
4.9/5
(39)
Showing 1 - 20 of 25
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)