Exam 2: Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let f(x)=xx2f ( x ) = - \frac { | x | } { x ^ { 2 } } . (a) Sketch the graph of ff . (b) Find the domain and the range of ff .

(Essay)
4.7/5
(31)

If f(x)=2x2+1f ( x ) = 2 x ^ { 2 } + 1 and g(x)=x1g ( x ) = x - 1 , find f+gf + g , fg\mathrm { fg } , and their domains.

(Essay)
4.9/5
(30)

Find the inverse function of f(x)=21xf ( x ) = 2 - \frac { 1 } { x } , x0x \neq 0 .

(Essay)
4.9/5
(33)

Determine whether the given curve is the graph of a function of xx . If it is, state the domain and range of the function.  Determine whether the given curve is the graph of a function of  x  . If it is, state the domain and range of the function.

(Multiple Choice)
4.7/5
(38)

Given f(x)=1xf ( x ) = \frac { 1 } { x } , g(x)=xx+1g ( x ) = \frac { x } { x + 1 } , and h(x)=x+1xh ( x ) = \frac { x + 1 } { x } , find fghf \circ g \circ h .

(Essay)
4.8/5
(40)

If f(x)=2x2+xf ( x ) = 2 x ^ { 2 } + x and g(x)=3x1g ( x ) = 3 x - 1 , find f+gf + g , fgf - g , and their domains.

(Essay)
4.9/5
(47)

Let f(x)=2x1f ( x ) = 2 x - 1 . (a) Sketch the graph of ff . (b) Find the domain of ff . (c) State the intervals on which ff is increasing and on which ff is decreasing.

(Essay)
4.9/5
(43)

Determine whether or not the function g(x)=1x2,x0g ( x ) = 1 - x ^ { 2 } , x \geq 0 is one-to-one.

(Essay)
4.8/5
(37)

For the functions f(x)=1x2f ( x ) = \frac { 1 } { x - 2 } and g(x)=xx1g ( x ) = \frac { x } { x - 1 } , find f+gf + g , fgf - g , fg\mathrm { fg } , fg\frac { f } { g } and their domains. Answer f+g=1x2+xx1=x2x1(x2)(x1)f + g = \frac { 1 } { x - 2 } + \frac { x } { x - 1 } = \frac { x ^ { 2 } - x - 1 } { ( x - 2 ) ( x - 1 ) } \quad domain: (,1)(1,2)(2,)( - \infty , 1 ) \cup ( 1,2 ) \cup ( 2 , \infty ) f-g=-=- domain: (-\infty,1)\cup(1,2)\cup(2,\infty) fg= = domain: (-\infty,1)\cup(1,2)\cup(2,\infty) = domain: (-\infty,0)\cup(0,1)\cup(1,2)\cup(2,\infty) 10. Given f(x)=2x2f ( x ) = 2 x - 2 and g(x)=2x2g ( x ) = 2 x ^ { 2 } , find (gf)(1)( g \circ f ) ( - 1 ) .

(Essay)
4.8/5
(37)

A man is running around a circular track that is 200 m in circumference. An observer uses a stopwatch to record the runner's time at the end of each lap, obtaining the data in the following table. What was the man's average speed (rate) between 108 s and 203 s? Round the answer to two decimal places. Time (s) Distance () 32 200 68 400 108 600 152 800 203 1000 263 1200 335 1400 412 1600

(Short Answer)
4.9/5
(36)

Graphs of the functions f and g are given. (a) Which is larger, f(3) or g(3)?f ( - 3 ) \text { or } g ( 3 ) ? (b) Which is larger, f(1) or g(1)?f ( - 1 ) \text { or } g ( - 1 ) ? (c) For which values of x is f(x)=g(x)?f ( x ) = g ( x ) ?  Graphs of the functions f and g are given. (a) Which is larger,  f ( - 3 ) \text { or } g ( 3 ) ?  (b) Which is larger,  f ( - 1 ) \text { or } g ( - 1 ) ?  (c) For which values of x is  f ( x ) = g ( x ) ?

(Essay)
4.9/5
(41)

A function is given. Use a graphing calculator to draw the graph of f. Find the domain and range of f from the graph. f(x)=x2,3x5f ( x ) = x ^ { 2 } , \quad - 3 \leq x \leq 5

(Essay)
4.9/5
(40)

Find the inverse function of f(x)=3(x+1)2f ( x ) = 3 ( x + 1 ) ^ { 2 } , x<1x < - 1 .

(Essay)
4.8/5
(44)

Determine whether or not the function h(x)=x3xh ( x ) = x ^ { 3 } - x is one-to-one.

(Essay)
4.8/5
(40)

For the function f(x)=2x21f ( x ) = 2 x ^ { 2 } - 1 , find f(x+1)f ( x + 1 ) and f(x)+1f ( x ) + 1 .

(Essay)
4.7/5
(35)

If f(x)=22xf ( x ) = \sqrt { 2 - 2 x } and g(x)=x21g ( x ) = \sqrt { x ^ { 2 } - 1 } , find f+gf + g , fg\mathrm { fg } , and their domains.

(Essay)
4.7/5
(44)

A function is given. (a) Find all the local maximum and minimum values of the function and the value of x at which each occurs. (b) Find the intervals on which the function is increasing and on which the function is decreasing. State all answers correct to two decimal places. G(x)=2x2+x+1G ( x ) = \frac { 2 } { x ^ { 2 } + x + 1 }

(Essay)
4.8/5
(31)

Let f(x)=3x+1f ( x ) = 3 x + 1 and g(x)=3x22x+1g ( x ) = 3 x ^ { 2 } - 2 x + 1 . Find fgf - g , fg\mathrm { fg } , and their domains.

(Essay)
4.7/5
(40)

Sketch the graph of the piecewise-defined function. f(x)={x2 if x1x2 if x>1f ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } & \text { if } | x | \leq 1 \\- x ^ { 2 } & \text { if } | x | > 1\end{array} \right.

(Essay)
4.9/5
(37)

Let f(x)=3+x2f ( x ) = 3 + x ^ { 2 } , 0x50 \leq x \leq 5 (a) Sketch the graph of ff then use it to sketch the graph of f1f ^ { - 1 } . (b) Find f1f ^ { - 1 } .

(Essay)
4.8/5
(36)
Showing 41 - 60 of 98
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)