Solved

Solve the Problem DD Be the Region Bounded Below by The xyx y

Question 341

Multiple Choice

Solve the problem.
-Let DD be the region bounded below by the xyx y -plane, above by the sphere x2+y2+z2=100x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 100 , and on the sides by the cylinder x2+y2=81x ^ { 2 } + y ^ { 2 } = 81 . Set up the triple integral in cylindrical coordinates that gives the volume of DD using the order of integration drdzdθ\mathrm { dr } \mathrm { dz } \mathrm { d } \theta .


A) 02π019010rdrdzdθ+02π199081z2rdrdzdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 19 } } \int _ { 0 } ^ { 10 } \mathrm { rdrdzd \theta } + \int _ { 0 } ^ { 2 \pi } \int _ { \sqrt { 19 } } ^ { 9 } \int _ { 0 } ^ { \sqrt { 81 - z ^ { 2 } } } \mathrm { rdrdzd \theta }
B) 02π01909rdrdzdθ+02π19100100z2rdrdzdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 19 } } \int _ { 0 } ^ { 9 } \mathrm { rdrdzd \theta } + \int _ { 0 } ^ { 2 \pi } \int _ { \sqrt { 19 } } ^ { 10 } \int _ { 0 } ^ { \sqrt { 100 - \mathrm { z } ^ { 2 } } } \mathrm { rdr } \mathrm { dz } d \theta
C) 02π01909rdrdzdθ+02π1910081z2rdrdzdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 19 } } \int _ { 0 } ^ { 9 } r d r d z d \theta + \int _ { 0 } ^ { 2 \pi } \int _ { \sqrt { 19 } } ^ { 10 } \int _ { 0 } ^ { \sqrt { 81 - z ^ { 2 } } } r d r d z d \theta
D) 02π019010rdrdzdθ+02π1990100z2rdrdzdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 19 } } \int _ { 0 } ^ { 10 } r d r d z d \theta + \int _ { 0 } ^ { 2 \pi } \int _ { \sqrt { 19 } } ^ { 9 } \int _ { 0 } ^ { \sqrt { 100 - z ^ { 2 } } } r d r d z d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions