Solved

Using Maclaurin Series, the General Series Solution, with the First y+x2y=0y ^ { \prime \prime } + x ^ { 2 } y = 0

Question 61

Multiple Choice

Using Maclaurin series, the general series solution, with the first three nonzero terms, of the differential equation y+x2y=0y ^ { \prime \prime } + x ^ { 2 } y = 0 is


A) y=A(1x412+x8672) +B(xx520+x91440) y = A \left( 1 - \frac { x ^ { 4 } } { 12 } + \frac { x ^ { 8 } } { 672 } - \cdots \right) + B \left( x - \frac { x ^ { 5 } } { 20 } + \frac { x ^ { 9 } } { 1440 } - \cdots \right)
B) y=A(1x412x8672) +B(xx520+x91440) y = A \left( 1 - \frac { x ^ { 4 } } { 12 } - \frac { x ^ { 8 } } { 672 } - \cdots \right) + B \left( x - \frac { x ^ { 5 } } { 20 } + \frac { x ^ { 9 } } { 1440 } - \cdots \right)
C) y=A(1x412+x8672) +B(xx520x91440) y = A \left( 1 - \frac { x ^ { 4 } } { 12 } + \frac { x ^ { 8 } } { 672 } - \cdots \right) + B \left( x - \frac { x ^ { 5 } } { 20 } - \frac { x ^ { 9 } } { 1440 } - \cdots \right)
D) y=A(1+x412x8672+) +B(xx520+x91440) y = A \left( 1 + \frac { x ^ { 4 } } { 12 } - \frac { x ^ { 8 } } { 672 } + \cdots \right) + B \left( x - \frac { x ^ { 5 } } { 20 } + \frac { x ^ { 9 } } { 1440 } - \cdots \right)
E) y=A(1x412+x8672) +B(x+x520+x91440+) y = A \left( 1 - \frac { x ^ { 4 } } { 12 } + \frac { x ^ { 8 } } { 672 } - \cdots \right) + B \left( x + \frac { x ^ { 5 } } { 20 } + \frac { x ^ { 9 } } { 1440 } + \cdots \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions