Exam 10: Introduction to the Derivative

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Estimate the limit numerically. limx7x2+14x+49x+7\lim _ { x \rightarrow - 7 } \frac { x ^ { 2 } + 14 x + 49 } { x + 7 }

(Multiple Choice)
4.8/5
(37)

At which labeled point is the slope of the tangent line greatest ? At which labeled point is the slope of the tangent line greatest  ?   ? ?

(Multiple Choice)
4.8/5
(39)

Estimate the derivative of the function f(x)=x22x312f ( x ) = \frac { x ^ { 2 } } { 2 } - \frac { x ^ { 3 } } { 12 } at the point x=1x = - 1 . ​ Please round your answer to the nearest hundredth.

(Short Answer)
4.9/5
(36)

Calculate the average rate of change of the given function over the interval [2,6][ 2,6 ] . t (month) 2 4 6 (t)( ( millions) 13.2 13.8 12.6

(Multiple Choice)
4.8/5
(37)

Calculate the limit algebraically. limx+5x6+8,000x3+5,000,0008x6+4,000x3\lim _ { x \rightarrow + \infty } \frac { 5 x ^ { 6 } + 8,000 x ^ { 3 } + 5,000,000 } { 8 x ^ { 6 } + 4,000 x ^ { 3 } }

(Multiple Choice)
4.8/5
(34)

The function given below gives the cost to manufacture χ\chi items. Estimate (using h=0.0001h = 0.0001 ) the instantaneous rate of change of the cost at the production level x=1,000x = 1,000 . C(x)=10,400+4xx212,000C ( x ) = 10,400 + 4 x - \frac { x ^ { 2 } } { 12,000 } Select your answer rounded to the nearest tenth.

(Multiple Choice)
4.9/5
(33)

Estimate the limit numerically. limx+3x2+270x+52x3+15\lim _ { x \rightarrow + \infty } \frac { 3 x ^ { 2 } + 270 x + 5 } { 2 x ^ { 3 } + 15 }

(Multiple Choice)
4.7/5
(39)

Calculate the average rate of change of the given function over the interval [2,0][ - 2,0 ] . f(x)=6x+10f ( x ) = 6 x + 10

(Multiple Choice)
4.7/5
(31)

Give an example of a function that is not continuous at x=8x = - 8 but is not discontinuous there either.

(Essay)
4.7/5
(26)

Calculate the limit algebraically. limx28x2+15x\lim _ { x \rightarrow - 2 } \frac { 8 x ^ { 2 } + 15 } { x }

(Multiple Choice)
4.7/5
(43)

Use the graph to compute limx4f(x)\lim_ { x \rightarrow -4 } f ( x ) and f(0)f ( 0 ) .  Use the graph to compute  \lim_ { x \rightarrow -4 } f ( x )  and  f ( 0 )  .

(Multiple Choice)
4.8/5
(36)

Calculate the limit algebraically. limx2x11x+3\lim _ { x \rightarrow 2 } \frac { x - 11 } { x + 3 }

(Multiple Choice)
4.9/5
(39)

Calculate the average rate of change of the given function over the interval [3,5][ - 3,5 ] . f(x)=2x2+8f ( x ) = 2 x ^ { 2 } + 8

(Multiple Choice)
4.8/5
(39)

Estimate the limit numerically. limx+4x4+40x31,500x3+3\lim _ { x \rightarrow + \infty } \frac { 4 x ^ { 4 } + 40 x ^ { 3 } } { 1,500 x ^ { 3 } + 3 }

(Multiple Choice)
4.9/5
(30)

Does this limit exist limx1x2+6x+1\lim _ { x \rightarrow - 1 } \frac { x ^ { 2 } + 6 } { x + 1 } Select the correct answer.

(Multiple Choice)
4.8/5
(40)

The function given below gives the cost to manufacture x items. Estimate (using h=0.0001h = 0.0001 ) the instantaneous rate of change of the total cost at the production level x=120x = 120 . C(x)=14,600+100x+1,300xC ( x ) = 14,600 + 100 x + \frac { 1,300 } { x } Select your answer rounded to the nearest tenth.

(Multiple Choice)
4.8/5
(36)

Compute the derivative function f(x)f ^ { \prime } ( x ) algebraically. ​ ​ f(x)=x27xf ( x ) = - x ^ { 2 } - 7 x

(Essay)
4.8/5
(26)

Compute f(a)f ^ { \prime } ( a ) for a=1a = 1 . f(x)=26x3f ( x ) = 2 - 6 x ^ { 3 }

(Multiple Choice)
4.8/5
(33)

The graph of a function f is given. Determine whether f is continuous on its domain. ​ ​ The graph of a function f is given. Determine whether f is continuous on its domain. ​ ​   ​

(Multiple Choice)
4.9/5
(31)
Showing 121 - 139 of 139
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)