Exam 3: Determinants

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve using Cramerʹs rule. - 3+3=9 2+=1

Free
(Multiple Choice)
4.8/5
(33)
Correct Answer:
Verified

D

Compute the determinant of the matrix by cofactor expansion. - [100650523]\left[ \begin{array} { r r r } 1 & 0 & 0 \\6 & - 5 & 0 \\- 5 & 2 & 3\end{array} \right]

Free
(Multiple Choice)
4.7/5
(41)
Correct Answer:
Verified

D

Determine the values of the parameter s for which the system has a unique solution, and describe the solution. - -5=3 2-10=5

Free
(Multiple Choice)
4.9/5
(27)
Correct Answer:
Verified

A

Calculate the area of the parallelogram with the given vertices. - (0,0),(5,8),(11,12),(6,4)( 0,0 ) , ( 5,8 ) , ( 11,12 ) , ( 6,4 )

(Multiple Choice)
4.8/5
(34)

Solve using Cramerʹs rule. - 5+9=-3 5+=4

(Multiple Choice)
4.8/5
(31)

Compute the determinant of the matrix by cofactor expansion. - [325114334]\left[ \begin{array} { l l l } 3 & 2 & 5 \\ 1 & 1 & 4 \\ 3 & 3 & 4 \end{array} \right]

(Multiple Choice)
4.9/5
(38)

Compute the determinant of the matrix by cofactor expansion. - [312314653]\left[ \begin{array} { r r r } 3 & 1 & 2 \\- 3 & - 1 & - 4 \\6 & 5 & 3\end{array} \right]

(Multiple Choice)
4.8/5
(31)

Compute the determinant of the matrix by cofactor expansion. - [429529774]\left[ \begin{array} { l l l } 4 & 2 & 9 \\5 & 2 & 9 \\7 & 7 & 4\end{array} \right]

(Multiple Choice)
4.9/5
(32)

Compute the determinant of the matrix by cofactor expansion. - [513122354]\left[ \begin{array} { r r r } 5 & 1 & 3 \\ 1 & - 2 & 2 \\ 3 & 5 & 4 \end{array} \right]

(Multiple Choice)
4.8/5
(33)

Compute the determinant of the matrix by cofactor expansion. - [2225403210002370001500002]\left[ \begin{array} { r r r r r } 2 & 2 & - 2 & 5 & - 4 \\0 & 3 & 2 & 1 & 0 \\0 & 0 & - 2 & 3 & 7 \\0 & 0 & 0 & - 1 & - 5 \\0 & 0 & 0 & 0 & 2\end{array} \right]

(Multiple Choice)
4.8/5
(41)

Compute the determinant of the matrix by cofactor expansion. - [482018009]\left[ \begin{array} { r r r } 4 & - 8 & 2 \\ 0 & 1 & 8 \\ 0 & 0 & - 9 \end{array} \right]

(Multiple Choice)
4.9/5
(35)

Calculate the area of the parallelogram with the given vertices. - (1,2),(1,4),(6,2),(8,8)( - 1 , - 2 ) , ( 1,4 ) , ( 6,2 ) , ( 8,8 )

(Multiple Choice)
4.8/5
(25)

Compute the determinant of the matrix by cofactor expansion. - [2131053543332513]\left[ \begin{array} { r r r r } 2 & 1 & - 3 & 1 \\0 & 5 & - 3 & 5 \\- 4 & 3 & 3 & 3 \\- 2 & 5 & 1 & 3\end{array} \right]

(Multiple Choice)
4.9/5
(39)

Determine the values of the parameter s for which the system has a unique solution, and describe the solution. - 2+2=26 2-2=-10

(Multiple Choice)
4.8/5
(35)

Compute the determinant of the matrix by cofactor expansion. - [226422716613142262]\left[ \begin{array} { r r r r } 2 & - 2 & 6 & 4 \\2 & 2 & 7 & 1 \\6 & - 6 & 13 & 14 \\- 2 & 2 & - 6 & 2\end{array} \right]

(Multiple Choice)
4.9/5
(35)

Compute the determinant of the matrix by cofactor expansion. - [1254812231]\left[ \begin{array} { r r r } 1 & 2 & 5 \\4 & 8 & 12 \\- 2 & 3 & - 1\end{array} \right]

(Multiple Choice)
4.9/5
(27)

Compute the determinant of the matrix by cofactor expansion. - [3222012203000314]\left[ \begin{array} { r r r r } - 3 & 2 & - 2 & 2 \\0 & - 1 & 2 & - 2 \\0 & 3 & 0 & 0 \\0 & - 3 & 1 & 4\end{array} \right]

(Multiple Choice)
4.8/5
(31)

Solve using Cramerʹs rule. - 2+3=26 -2+4=2

(Multiple Choice)
4.9/5
(30)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)