Exam 2: Matrix Algebra

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the equation Ax = b by using the LU factorization given for A. - A= 3 -1 2 -6 4 -5 9 5 6 ,= 6 -3 2 A= 1 0 0 -2 1 0 3 4 1 3 -1 2 0 2 -1 0 0 4

Free
(Multiple Choice)
4.9/5
(34)
Correct Answer:
Verified

C

Solve the system by using the inverse of the coefficient matrix. - 2-4=-2 3+4=-23

Free
(Multiple Choice)
4.9/5
(32)
Correct Answer:
Verified

D

The sizes of two matrices A and B are given. Find the sizes of the product AB and the product BA, if the products are defined. - AA is 2×12 \times 1 , B is 1×11 \times 1 .

Free
(Multiple Choice)
4.8/5
(24)
Correct Answer:
Verified

A

Find the 4 × 4 matrix that produces the described transformation, using homogeneous coordinates. -Rotation about the y-axis through an angle of 60° 73)

(Multiple Choice)
4.8/5
(35)

Decide whether or not the matrices are inverses of each other. - [5160]\left[ \begin{array} { r r } - 5 & - 1 \\ 6 & 0 \end{array} \right] and [016156]\left[ \begin{array} { c } 0 \frac { 1 } { 6 } \\ - 1 \frac { 5 } { 6 } \end{array} \right]

(Multiple Choice)
5.0/5
(36)

Find the 3 × 3 matrix that produces the described composite 2D transformation, using homogeneous coordinates. -Translate by (8, 6), and then reflect through the line y = x.

(Multiple Choice)
4.7/5
(32)

Find the transpose of the matrix. - [74740707]\left[ \begin{array} { r r r r } 7 & 4 & 7 & 4 \\ 0 & - 7 & 0 & - 7 \end{array} \right]

(Multiple Choice)
4.9/5
(30)

Solve the system by using the inverse of the coefficient matrix. -10x1 - 4x2 = -6 6x1 - x2 = 2

(Multiple Choice)
4.7/5
(38)

Determine whether b is in the column space of A. - A=[1025810336],b=[434]A = \left[ \begin{array} { r r c } - 1 & 0 & 2 \\5 & 8 & - 10 \\- 3 & - 3 & 6\end{array} \right] , \mathbf { b } = \left[ \begin{array} { r } - 4 \\3 \\4\end{array} \right]

(Multiple Choice)
4.8/5
(35)

Solve the system by using the inverse of the coefficient matrix. - 2+6=2 2-=-5

(Multiple Choice)
4.7/5
(32)

Find the matrix product AB, if it is defined. - A=[0343],B=[2011]A = \left[ \begin{array} { r r } 0 & - 3 \\4 & 3\end{array} \right] , B = \left[ \begin{array} { l l } - 2 & 0 \\- 1 & 1\end{array} \right]

(Multiple Choice)
4.8/5
(40)

Perform the matrix operation. -Let B=[1173]B = \left[ \begin{array} { l l l l } - 1 & 1 & 7 & - 3 \end{array} \right] . Find 4B- 4 B .

(Multiple Choice)
4.8/5
(33)

Solve the system by using the inverse of the coefficient matrix. - 2-6=-6 3+2=13

(Multiple Choice)
5.0/5
(35)

Decide whether or not the matrices are inverses of each other. - [9444] and [0.20.20.20.45]\left[ \begin{array} { l l } 9 & 4 \\4 & 4\end{array} \right] \text { and } \left[ \begin{array} { r r } - 0.2 & 0.2 \\0.2 & - 0.45\end{array} \right]

(Multiple Choice)
4.8/5
(36)

Find the inverse of the matrix, if it exists - A=[1406]A = \left[ \begin{array} { r r } 1 & 4 \\0 & - 6\end{array} \right]

(Multiple Choice)
4.7/5
(16)

Solve the system by using the inverse of the coefficient matrix. - 6+3 =0 2 =-6

(Multiple Choice)
4.8/5
(32)

Find the inverse of the matrix, if it exists - A=[6330]A = \left[ \begin{array} { l l } 6 & 3 \\3 & 0\end{array} \right]

(Multiple Choice)
4.9/5
(38)

Decide whether or not the matrices are inverses of each other. - [6535]\left[ \begin{array} { r r } 6 & - 5 \\ - 3 & 5 \end{array} \right] and [13131525]\left[ \begin{array} { l l } \frac { 1 } { 3 } & \frac { 1 } { 3 } \\ \frac { 1 } { 5 } & \frac { 2 } { 5 } \end{array} \right]

(Multiple Choice)
4.8/5
(33)

Find the matrix product AB, if it is defined. - A=[3230],B=[0246]A = \left[ \begin{array} { r r } 3 & - 2 \\3 & 0\end{array} \right] , B = \left[ \begin{array} { r r } 0 & - 2 \\4 & 6\end{array} \right]

(Multiple Choice)
4.7/5
(33)

Determine the rank of the matrix. - [122324723669]\left[ \begin{array} { r r r r } 1 & - 2 & 2 & - 3 \\2 & - 4 & 7 & - 2 \\- 3 & 6 & - 6 & 9\end{array} \right]

(Multiple Choice)
4.8/5
(36)
Showing 1 - 20 of 82
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)