Exam 1: Linear Equations in Linear Algebra

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -The columns of I3=[100010001]\mathrm { I } _ { 3 } = \left[ \begin{array} { l l l } 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] are e1=[100],e2=[010],e3=[001]\mathbf { e } _ { 1 } = \left[ \begin{array} { l } 1 \\ 0 \\ 0 \end{array} \right] , \mathbf { e } _ { 2 } = \left[ \begin{array} { l } 0 \\ 1 \\ 0 \end{array} \right] , \mathbf { e } _ { 3 } = \left[ \begin{array} { l } 0 \\ 0 \\ 1 \end{array} \right] . Suppose that T\mathrm { T } is a linear transformation from R3R ^ { 3 } into R2\mathcal { R } ^ { 2 } such that T(e1)=[32],T(e2)=[50]\mathrm { T } \left( \mathbf { e } _ { 1 } \right) = \left[ \begin{array} { r } 3 \\ - 2 \end{array} \right] , \mathrm { T } \left( \mathbf { e } _ { 2 } \right) = \left[ \begin{array} { l } 5 \\ 0 \end{array} \right] , and T(e3)=[51]\mathrm { T } \left( \mathbf { e } _ { 3 } \right) = \left[ \begin{array} { r } - 5 \\ 1 \end{array} \right] Find a formula for the image of an arbitrary x=[x1x2x3]x = \left[ \begin{array} { l } x _ { 1 } \\ x _ { 2 } \\ x _ { 3 } \end{array} \right] in R3R ^ { 3 } .

Free
(Multiple Choice)
4.8/5
(33)
Correct Answer:
Verified

D

Solve the problem. -Let a1=[344],a2=[411]\mathbf { a } _ { 1 } = \left[ \begin{array} { r } 3 \\ 4 \\ - 4 \end{array} \right] , \mathbf { a } _ { 2 } = \left[ \begin{array} { r } - 4 \\ 1 \\ 1 \end{array} \right] , and b=[2106]\mathbf { b } = \left[ \begin{array} { r } 2 \\ - 10 \\ 6 \end{array} \right] Determine whether b\mathbf { b } can be written as a linear combination of a1\mathbf { a } _ { \mathbf { 1 } } and a2\mathbf { a } _ { \mathbf { 2 } } . In other words, determine whether weights x1x _ { 1 } and x2x _ { 2 } exist, such that x1a1+x2a2=bx _ { 1 } a _ { 1 } + x _ { 2 } a _ { 2 } = b . Determine the weights x1x _ { 1 } and x2x _ { 2 } if possible.

Free
(Multiple Choice)
4.8/5
(25)
Correct Answer:
Verified

C

Determine whether the matrix is in echelon form, reduced echelon form, or neither. - [1534005400020000]\left[ \begin{array} { r r r r } 1 & - 5 & 3 & 4 \\0 & 0 & - 5 & - 4 \\0 & 0 & 0 & - 2 \\0 & 0 & 0 & 0\end{array} \right]

Free
(Multiple Choice)
4.8/5
(35)
Correct Answer:
Verified

B

Solve the problem. - 2x116x2+10x3=02 x _ { 1 } - 16 x _ { 2 } + 10 x _ { 3 } = 0

(Multiple Choice)
4.8/5
(39)

Solve the problem. -Let T:R2R2T : R ^ { 2 } \rightarrow \mathscr { R } ^ { 2 } be a linear transformation that maps u=[64]\mathbf { u } = \left[ \begin{array} { r } - 6 \\ 4 \end{array} \right] into [2212]\left[ \begin{array} { r } - 22 \\ 12 \end{array} \right] and maps v=[25]\mathbf { v } = \left[ \begin{array} { r } 2 \\ - 5 \end{array} \right] into [114]\left[ \begin{array} { c } 11 \\ - 4 \end{array} \right] . Use the fact that TT is linear to find the image of 3u+v3 \mathbf { u } + \mathbf { v } .

(Multiple Choice)
4.7/5
(37)

Write the system as a vector equation or matrix equation as indicated. -Write the following system as a matrix equation involving the product of a matrix and a vector on the left side and a vector on the right side. 2+-6 =-6 6-4 =2

(Multiple Choice)
4.8/5
(28)

Find the standard matrix of the linear transformation T. -T: R2R2R ^ { 2 } \rightarrow R ^ { 2 } first performs a vertical shear that maps e1\mathbf { e } _ { 1 } into e1+3e2\mathbf { e } _ { 1 } + 3 \mathbf { e } _ { 2 } , but leaves the vector e2\mathbf { e } _ { 2 } unchanged, then reflects the result through the horizontal x1x _ { 1 } -axis.

(Multiple Choice)
4.9/5
(37)

The augmented matrix is given for a system of equations. If the system is consistent, find the general solution. Otherwise state that there is no solution. - [123601470002]\left[ \begin{array} { r r r r } 1 & 2 & - 3 & - 6 \\0 & 1 & 4 & 7 \\0 & 0 & 0 & 2\end{array} \right]

(Multiple Choice)
4.8/5
(44)

Use the row reduction algorithm to transform the matrix into echelon form or reduced echelon form as indicated. -Find the reduced echelon form of the given matrix. [1451225414399210]\left[ \begin{array} { c r r r r } 1 & 4 & - 5 & 1 & 2 \\2 & 5 & - 4 & - 1 & 4 \\- 3 & - 9 & 9 & 2 & 10\end{array} \right]

(Multiple Choice)
4.8/5
(36)

Determine whether the matrix is in echelon form, reduced echelon form, or neither. - [1035013400000000]\left[ \begin{array} { r r r r } 1 & 0 & - 3 & - 5 \\0 & 1 & - 3 & 4 \\0 & 0 & 0 & 0 \\0 & 0 & 0 & 0\end{array} \right]

(Multiple Choice)
4.8/5
(32)

Determine whether the matrix is in echelon form, reduced echelon form, or neither. - [145701460216]\left[ \begin{array} { r r r r } 1 & 4 & 5 & - 7 \\0 & 1 & - 4 & - 6 \\0 & 2 & 1 & 6\end{array} \right]

(Multiple Choice)
4.9/5
(40)

Solve the problem. -Suppose an economy consists of three sectors: Energy (E), Manufacturing (M), and Agriculture (A) Sector E sells 70%70 \% of its output to M\mathrm { M } and 30%30 \% to A\mathrm { A } . Sector M sells 30%30 \% of its output to E, 50%50 \% to A, and retains the rest. Sector A sells 15%15 \% of its output to E, 30%30 \% to MM , and retains the rest. Denote the prices (dollar values) of the total annual outputs of the Energy, Manufacturing, and Agriculture sectors by pe,pm\mathrm { p } _ { \mathrm { e } } , \mathrm { p } _ { \mathrm { m } } , and pa\mathrm { p } _ { \mathrm { a } } , respectively. If possible, find equilibrium prices that make each sector's income match its expenditures. Find the general solution as a vector, with pa\mathrm { p } _ { \mathrm { a } } free.

(Multiple Choice)
4.9/5
(43)

The augmented matrix is given for a system of equations. If the system is consistent, find the general solution. Otherwise state that there is no solution. - [123501450000]\left[ \begin{array} { r r r r } 1 & 2 & - 3 & 5 \\0 & 1 & 4 & - 5 \\0 & 0 & 0 & 0\end{array} \right]

(Multiple Choice)
4.9/5
(44)

Solve the problem. -The table shows the amount (in g)of protein, carbohydrate, and fat supplied by one unit (100 g)of three different foods. Let T\mathrm { T } be the linear transformation whose standard matrix is A=[123134295]A = \left[ \begin{array} { r r r } 1 & - 2 & 3 \\- 1 & 3 & - 4 \\- 2 & - 9 & 5\end{array} \right] Determine whether the linear transformation T\mathrm { T } is one-to-one and whether it maps R3R ^ { 3 } onto R3R ^ { 3 } .

(Multiple Choice)
4.8/5
(29)

Find the indicated vector. -Let u=[47]\mathbf { u } = \left[ \begin{array} { r } 4 \\ - 7 \end{array} \right] . Find 7u7 \mathbf { u } .

(Multiple Choice)
4.8/5
(34)

Determine whether the matrix is in echelon form, reduced echelon form, or neither. - [162701460000]\left[ \begin{array} { r r r r } 1 & 6 & 2 & - 7 \\0 & 1 & - 4 & - 6 \\0 & 0 & 0 & 0\end{array} \right]

(Multiple Choice)
4.8/5
(35)

Solve the system of equations. - 7+7+=1 +8+8=8 9++9=9

(Multiple Choice)
4.8/5
(36)

Solve the problem. -Let A=[132341253]A = \left[ \begin{array} { r r r } 1 & - 3 & 2 \\ - 3 & 4 & - 1 \\ 2 & - 5 & 3 \end{array} \right] and b=[244]\mathbf { b } = \left[ \begin{array} { r } 2 \\ 4 \\ - 4 \end{array} \right] . Define a transformation T:R3R3\mathrm { T } : \mathfrak { R } ^ { 3 } \rightarrow \mathbb { R } ^ { 3 } by T(x)=Ax\mathrm { T } ( \mathrm { x } ) = \mathrm { Ax } . If possible, find a vector x\mathbf { x } whose image under T\mathrm { T } is b\mathbf { b } . Otherwise, state that b\mathbf { b } is not in the range of the transformation T\mathrm { T } .

(Multiple Choice)
4.9/5
(37)

Solve the problem. -Find the general solution of the homogeneous system below. Give your answer as a vector. +2-3=0 4+7-9=0 --4+9=0

(Multiple Choice)
4.7/5
(41)

Find the indicated vector. -Let u=[11],v=[43]\mathbf { u } = \left[ \begin{array} { r } - 1 \\ 1 \end{array} \right] , \mathbf { v } = \left[ \begin{array} { r } - 4 \\ 3 \end{array} \right] . Find uv\mathbf { u } - \mathbf { v } .

(Multiple Choice)
4.8/5
(33)
Showing 1 - 20 of 79
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)