Exam 6: Orthogonality and Least Squares

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Compute the dot product u · v. - u=[1005],v=[231]\mathbf { u } = \left[ \begin{array} { r } 10 \\0 \\5\end{array} \right] , \mathbf { v } = \left[ \begin{array} { r } 2 \\3 \\- 1\end{array} \right]

Free
(Multiple Choice)
4.7/5
(42)
Correct Answer:
Verified

C

Find the distance between the two vectors. - u=(8,1),v=(1,8)\mathbf { u } = ( - 8 , - 1 ) , \mathbf { v } = ( 1 , - 8 )

Free
(Multiple Choice)
4.9/5
(36)
Correct Answer:
Verified

A

Find the closest point to y in the subspace W spanned by u1 and u2. - y=[27177],u1=[221],u2=[134]\mathbf { y } = \left[ \begin{array} { r } 27 \\17 \\7\end{array} \right] , \mathbf { u } _ { 1 } = \left[ \begin{array} { r } 2 \\2 \\- 1\end{array} \right] , \mathbf { u } _ { 2 } = \left[ \begin{array} { r } - 1 \\3 \\4\end{array} \right]

Free
(Multiple Choice)
4.7/5
(36)
Correct Answer:
Verified

D

Find a least-squares solution of the inconsistent system Ax = b. - A=[123459],b=[151]\mathrm { A } = \left[ \begin{array} { l l } 1 & 2 \\3 & 4 \\5 & 9\end{array} \right] , \mathrm { b } = \left[ \begin{array} { l } 1 \\5 \\1\end{array} \right]

(Multiple Choice)
4.8/5
(41)

Compute the length of the given vector. - p(t)=3t+4p ( t ) = 3 t + 4 and q(t)=4t5q ( t ) = 4 t - 5 , where t0=0,t1=1,t2=2t _ { 0 } = 0 , t _ { 1 } = 1 , t _ { 2 } = 2

(Multiple Choice)
4.8/5
(30)

Find a QR factorization of the matrix A. - A=[011110111111]A = \left[ \begin{array} { r r r } 0 & 1 & 1 \\1 & 1 & 0 \\- 1 & - 1 & 1 \\1 & - 1 & 1\end{array} \right]

(Multiple Choice)
4.9/5
(33)

Compute the dot product u · v. - u=[152],v=[011]\mathbf { u } = \left[ \begin{array} { r } - 15 \\2\end{array} \right] , \mathbf { v } = \left[ \begin{array} { r } 0 \\11\end{array} \right]

(Multiple Choice)
4.9/5
(41)

Solve the problem. -Let V\mathrm { V } be in P4\mathrm { P } _ { 4 } , involving evaluation of polynomials at 4,1,0,1- 4 , - 1,0,1 , and 4 , and view P2\mathrm { P } _ { 2 } by applying the Gram-Schmidt process to the polynomials 1 , tt , and t2t ^ { 2 } .

(Multiple Choice)
4.8/5
(39)

Find the distance between the two vectors. - u=(14,17,22),v=(2,9,2)\mathbf { u } = ( 14,17,22 ) , \mathbf { v } = ( 2,9,2 )

(Multiple Choice)
4.9/5
(33)

Find the distance between the two vectors. - u=(5,6,5),v=(3,4,5)\mathbf { u } = ( - 5,6 , - 5 ) , \mathbf { v } = ( - 3,4,5 )

(Multiple Choice)
5.0/5
(36)

Compute the dot product u · v. - u=[515],v=[615]\mathbf { u } = \left[ \begin{array} { r } 5 \\15\end{array} \right] , \mathbf { v } = \left[ \begin{array} { r } 6 \\15\end{array} \right]

(Multiple Choice)
5.0/5
(46)

Solve the problem. -Find the nth-order Fourier approximation to the function f(t)=3tf ( t ) = 3 t on the interval [0,2π][ 0,2 \pi ] .

(Multiple Choice)
4.8/5
(33)

Find a least-squares solution of the inconsistent system Ax = b. -Find a least-squares solution of the inconsistent system Ax = b. -

(Multiple Choice)
4.7/5
(28)

Compute the dot product u · v. - u=[153],v=[325]\mathbf { u } = \left[ \begin{array} { r } - 1 \\5 \\3\end{array} \right] , \mathbf { v } = \left[ \begin{array} { r } 3 \\2 \\- 5\end{array} \right]

(Multiple Choice)
4.8/5
(37)

Solve the problem. -Let V\mathrm { V } be in P4\mathrm { P } _ { 4 } , involving evaluation of polynomials at 5,3,0,3- 5 , - 3,0,3 , and 5 , and view P2\mathrm { P } _ { 2 } by applying the Gram-Schmidt process to the polynomials 1,t1 , t , and t2t ^ { 2 } .

(Multiple Choice)
4.9/5
(34)

Solve the problem. -Data points: (5, -3), (2, 2), (4, 3), (5, 1) X=[15121415],y=[3231]\mathrm { X } = \left[ \begin{array} { l l } 1 & 5 \\1 & 2 \\1 & 4 \\1 & 5\end{array} \right] , \mathrm { y } = \left[ \begin{array} { r } - 3 \\2 \\3 \\1\end{array} \right]

(Multiple Choice)
4.8/5
(36)

Find the orthogonal projection of y onto u. - y=[2410],u=[420]\mathbf { y } = \left[ \begin{array} { r } - 24 \\ 10 \end{array} \right] , \mathbf { u } = \left[ \begin{array} { r } 4 \\ 20 \end{array} \right]

(Multiple Choice)
4.8/5
(27)

The given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W. -Let x1=[630],x2=[6183]x _ { 1 } = \left[ \begin{array} { r } 6 \\ - 3 \\ 0 \end{array} \right] , x _ { 2 } = \left[ \begin{array} { r } 6 \\ - 18 \\ 3 \end{array} \right]

(Multiple Choice)
4.8/5
(34)

The given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W. -Let x1=[0111],x2=[1111],x3=[1011]\mathrm { x } _ { 1 } = \left[ \begin{array} { r } 0 \\ 1 \\ - 1 \\ 1 \end{array} \right] , \mathrm { x } _ { 2 } = \left[ \begin{array} { r } 1 \\ 1 \\ - 1 \\ - 1 \end{array} \right] , \mathrm { x } _ { 3 } = \left[ \begin{array} { l } 1 \\ 0 \\ 1 \\ 1 \end{array} \right]

(Multiple Choice)
4.8/5
(28)

Determine whether the set of vectors is orthogonal. - [484],[404],[444]\left[ \begin{array} { l } - 4 \\- 8 \\- 4\end{array} \right] , \left[ \begin{array} { r } 4 \\0 \\- 4\end{array} \right] , \left[ \begin{array} { r } - 4 \\4 \\- 4\end{array} \right]

(Multiple Choice)
4.8/5
(43)
Showing 1 - 20 of 44
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)