Exam 8: The Geometry of Vector Spaces

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Sketch the graph of the convex hull of S. -In R2,SR ^ { 2 } , S is the set of points [xy]\left[ \begin{array} { l } x \\ y \end{array} \right] where y=x2y = x ^ { 2 } and x0x \geq 0  Sketch the graph of the convex hull of S. -In  R ^ { 2 } , S  is the set of points  \left[ \begin{array} { l } x \\ y \end{array} \right]  where  y = x ^ { 2 }  and  x \geq 0

Free
(Multiple Choice)
4.9/5
(30)
Correct Answer:
Verified

D

Find the barycentric coordinates of p with respect to the affinely independent set of points that precedes it. -Let p\mathbf { p } be a point in the interior of abc\triangle \mathrm { abc } with barycentric coordinates (12,38,18)\left( \frac { 1 } { 2 } , \frac { 3 } { 8 } , \frac { 1 } { 8 } \right) . What is the area of Δ\Delta pbc with respect to the area of Δabc\Delta \mathbf { a b c } ?

Free
(Multiple Choice)
4.8/5
(30)
Correct Answer:
Verified

B

Provide an appropriate response. -Which of the following statements are true? I: Suppose f:RnRm\mathrm { f } : \mathfrak { R } ^ { \mathrm { n } } \rightarrow R ^ { \mathrm { m } } is a linear transformation and SS is an affine subset of RnR ^ { \mathrm { n } } . It follows that the set of images f(S)f ( S ) is an affine subset of RmR ^ { m } . II: If ABA \subset B , then aff ABA \subset B .

Free
(Multiple Choice)
4.7/5
(42)
Correct Answer:
Verified

A

Write y as an affine combination of the other points listed. - v1=[32],v2=[11],v3=[91],y=[74]\mathbf { v } _ { 1 } = \left[ \begin{array} { r } 3 \\- 2\end{array} \right] , \mathbf { v } _ { 2 } = \left[ \begin{array} { r } 1 \\- 1\end{array} \right] , \mathbf { v } _ { 3 } = \left[ \begin{array} { r } 9 \\- 1\end{array} \right] , \mathbf { y } = \left[ \begin{array} { l } 7 \\4\end{array} \right]

(Multiple Choice)
4.9/5
(30)

Find the barycentric coordinates of p with respect to the affinely independent set of points that precedes it. - [11],[35],[06],p=[23]\left[ \begin{array} { l } 1 \\ 1 \end{array} \right] , \left[ \begin{array} { l } 3 \\ 5 \end{array} \right] , \left[ \begin{array} { l } 0 \\ 6 \end{array} \right] , \mathrm { p } = \left[ \begin{array} { l } 2 \\ 3 \end{array} \right]

(Multiple Choice)
4.9/5
(35)

Use the barycentric coordinates with respect to S to determine if the point p is inside, outside, on a face, or on the edge of conv S which is a tetrahedron. - S={v1,v2,v3,v4,}\mathrm { S } = \left\{ \mathbf { v } _ { 1 } , \mathbf { v } _ { 2 } , \mathbf { v } _ { 3 } , \mathbf { v } _ { 4 } , \right\} Barycentric coordinates: (12,0,18,38)\left( \frac { 1 } { 2 } , 0 , \frac { 1 } { 8 } , \frac { 3 } { 8 } \right)

(Multiple Choice)
4.8/5
(41)

Find the barycentric coordinates of p with respect to the affinely independent set of points that precedes it. - [1121],[2101],[1220],p=[111143]\left[ \begin{array} { r } 1 \\ - 1 \\ 2 \\ 1 \end{array} \right] , \left[ \begin{array} { l } 2 \\ 1 \\ 0 \\ 1 \end{array} \right] , \left[ \begin{array} { r } 1 \\ 2 \\ - 2 \\ 0 \end{array} \right] , \mathbf { p } = \left[ \begin{array} { r } - 1 \\ - 11 \\ 14 \\ 3 \end{array} \right]

(Multiple Choice)
4.9/5
(46)

Provide an appropriate response -Let (pos S)be the set of all positive combinations of the points of S. Which of the following statements are true? I: (posS)(( \operatorname { pos } S ) \cap ( aff S)=S ) = conv SS II: If a unique linear combination of points is both positive and affine, then it must be convex.

(Multiple Choice)
4.9/5
(41)

Sketch the graph of the convex hull of S. - InR2, let S={[03]}{[x0]:0x4}\operatorname{In} \mathfrak{R}^{2}, \text { let } \mathrm{S}=\left\{\left[\begin{array}{l}0 \\3\end{array}\right]\right\} \cup\left\{\left[\begin{array}{l}\mathrm{x} \\0\end{array}\right]: 0 \leq \mathrm{x} \leq 4\right\}  Sketch the graph of the convex hull of S. - \operatorname{In} \mathfrak{R}^{2}, \text { let } \mathrm{S}=\left\{\left[\begin{array}{l} 0 \\ 3 \end{array}\right]\right\} \cup\left\{\left[\begin{array}{l} \mathrm{x} \\ 0 \end{array}\right]: 0 \leq \mathrm{x} \leq 4\right\}

(Multiple Choice)
4.7/5
(34)

Provide an appropriate response -Let int S be the set of all interior points of S, and let cl S be the closure of S (S ∪ the set of all boundary points of S). Which of the following statements are true? I: If S is convex, then int S is convex. II: If S is convex, then cl S is convex.

(Multiple Choice)
4.9/5
(30)

Find the barycentric coordinates of p with respect to the affinely independent set of points that precedes it. -If {v1,v2}\left\{ \mathbf { v } _ { 1 } , \mathbf { v } _ { 2 } \right\} in RnR ^ { \mathbf { n } } is affinely dependent, what is known about the 2 points?

(Multiple Choice)
4.9/5
(34)

Provide an appropriate response -Which of the following statements are true? I: A linear transformation from R\mathscr { R } to RnR ^ { \mathrm { n } } is called a linear functional. II: The convex hull of a closed set is closed.

(Multiple Choice)
5.0/5
(35)

Find the barycentric coordinates of p with respect to the affinely independent set of points that precedes it. -How many points need to be in a set in R66R ^ { 6 } 6 to guarantee that the set is affinely dependent?

(Multiple Choice)
4.8/5
(26)

Provide an appropriate response. -How many control points are needed for a cubic Bézier curve?

(Multiple Choice)
4.9/5
(35)

Provide an appropriate response -Which of the following statements are true? I: If S={(x,y):xy=0S = \{ ( x , y ) : x - y = 0 and x0}x \geq 0 \} and if PP is its profile, then conv P=SP = S . II: If S={(x,y):xy=0S = \{ ( x , y ) : x - y = 0 and 0x5}0 \leq x \leq 5 \} and if PP is its profile, then conv P=SP = S .

(Multiple Choice)
4.9/5
(23)

Provide an appropriate response -Which of the following statements are true? I: If ABA \subset B , then AconvBA \subset \operatorname { conv } B . II: If ABA \subset B , then conv AconvBA \subset c o n v B .

(Multiple Choice)
4.8/5
(24)

Let H be the hyperplane through the points. Find a linear functional f and a real number d such that H = [f : d]. - [111],[315],[422]\left[ \begin{array} { l } 1 \\ 1 \\ 1 \end{array} \right] , \left[ \begin{array} { r } 3 \\ - 1 \\ 5 \end{array} \right] , \left[ \begin{array} { r } 4 \\ 2 \\ - 2 \end{array} \right]

(Multiple Choice)
4.8/5
(38)

Provide an appropriate response. -Let x(t)x ( t ) be a Bézier curve and the tangent vector x(t)x ^ { \prime } ( t ) is computed. What does knowing that x(0)=\mathbf { x } ^ { \prime } ( 0 ) = 3(p1p0)3 \left( \mathbf { p } _ { 1 } - \mathrm { p } _ { 0 } \right) tell you?

(Multiple Choice)
4.8/5
(32)

Determine if the vector p is in Span S or aff S. -  Let v1=[2132],v2=[3104],v3=[5412],p=[5353], and S={v1,v2,v3}. It can be shown that S is linearly \text { Let } \mathbf{v}_{1}=\left[\begin{array}{r}2 \\1 \\3 \\-2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}3 \\-1 \\0 \\4\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}5 \\4 \\-1 \\-2\end{array}\right], p=\left[\begin{array}{r}5 \\-3 \\5 \\3\end{array}\right] \text {, and } \mathrm{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \text {. It can be shown that } \mathrm{S} \text { is linearly } independent.

(Multiple Choice)
4.8/5
(32)

Determine if the vector p is in Span S or aff S. -Let v1=[2132],v2=[3104],v3=[5412],p=[101268]\mathbf { v } _ { 1 } = \left[ \begin{array} { r } 2 \\ 1 \\ 3 \\ - 2 \end{array} \right] , \mathbf { v } _ { 2 } = \left[ \begin{array} { r } 3 \\ - 1 \\ 0 \\ 4 \end{array} \right] , \mathbf { v } _ { 3 } = \left[ \begin{array} { r } 5 \\ 4 \\ - 1 \\ - 2 \end{array} \right] , \mathbf { p } = \left[ \begin{array} { r } 10 \\ 12 \\ - 6 \\ - 8 \end{array} \right] , and S={v1,v2,v3}\mathrm { S } = \left\{ \mathbf { v } _ { 1 } , \mathbf { v } _ { 2 } , \mathbf { v } _ { 3 } \right\} . It can be shown that S\mathrm { S } is linearly independent.

(Multiple Choice)
4.7/5
(33)
Showing 1 - 20 of 57
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)