Exam 7: Symmetric Matrices and Quadratic Forms

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Orthogonally diagonalize the matrix, giving an orthogonal matrix P and a diagonal matrix D. - [12667]\left[ \begin{array} { c r } 12 & - 6 \\- 6 & 7\end{array} \right]

Free
(Multiple Choice)
4.9/5
(34)
Correct Answer:
Verified

C

 Find the maximum value of Q(x) subject to the constraint xTx=1\text { Find the maximum value of } Q ( x ) \text { subject to the constraint } _x T _ { x = 1 } \text {. } - Q(x)=2x12+9x22+5×23Q ( x ) = 2 x _ { 1 } ^ { 2 } + 9 x _ { 2 } ^ { 2 } + 5 \times \frac { 2 } { 3 }

Free
(Multiple Choice)
4.8/5
(32)
Correct Answer:
Verified

D

Find the maximum value of Q(x)Q ( x ) subject to the constraints xTx=1_x T _ { x } = 1 and xTu=0_x { T } \mathbf { _u } = 0 , where uu is a unit eigenvector corresponding to the greatest eigenvalue of the matrix of the quadratic form. - Q(x)=14x12+14x22+18x32+26x1x2+18x1x3+18x2x3Q ( x ) = 14 x _ { 1 } ^ { 2 } + 14 x _ { 2 } ^ { 2 } + 18 x _ { 3 } ^ { 2 } + 26 x _ { 1 } x _ { 2 } + 18 x _ { 1 } x _ { 3 } + 18 x _ { 2 } x _ { 3 }

Free
(Multiple Choice)
4.8/5
(25)
Correct Answer:
Verified

B

Find a singular value decomposition of the matrix A. - A=[9006]A = \left[ \begin{array} { r r } - 9 & 0 \\0 & 6\end{array} \right]

(Multiple Choice)
4.9/5
(41)

Make a change of variable, x = Py, that transforms the given quadratic form into a quadratic form with no cross-product term. Give P and the new quadratic form. - Q(x)=13x12+12x22+5x32+20x1x2+8x1x3+12x2x3Q ( x ) = 13 x _ { 1 } ^ { 2 } + 12 x _ { 2 } ^ { 2 } + 5 x _ { 3 } ^ { 2 } + 20 x _ { 1 } x _ { 2 } + 8 x _ { 1 } x _ { 3 } + 12 x _ { 2 } x _ { 3 }

(Multiple Choice)
4.9/5
(29)

Convert the matrix of observations to mean-deviation form, and construct the sample covariance matrix. - S=[301212126012036]\mathrm { S } = \left[ \begin{array} { r c c } 30 & - 12 & 12 \\- 12 & 6 & 0 \\12 & 0 & 36\end{array} \right]

(Multiple Choice)
4.8/5
(33)

Orthogonally diagonalize the matrix, giving an orthogonal matrix P and a diagonal matrix D. - [1310410126465]\left[ \begin{array} { r r r } 13 & 10 & 4 \\10 & 12 & 6 \\4 & 6 & 5\end{array} \right]

(Multiple Choice)
4.8/5
(42)

Find the matrix of the quadratic form. - 6x1x218x1x3+18x2x36 x _ { 1 } x _ { 2 } - 18 x _ { 1 } x _ { 3 } + 18 x _ { 2 } x _ { 3 }

(Multiple Choice)
4.9/5
(41)

Find a singular value decomposition of the matrix A. - A=[404444]A = \left[ \begin{array} { r r r } 4 & 0 & - 4 \\4 & 4 & 4\end{array} \right]

(Multiple Choice)
4.9/5
(38)

 Compute the quadratic form xTAx for the given matrix A and vector x\text { Compute the quadratic form } x ^ { T } A x \text { for the given matrix } A \text { and vector } x \text {. } - A=[2009],x=[x1x2]A = \left[ \begin{array} { r r } 2 & 0 \\0 & - 9\end{array} \right] , x = \left[ \begin{array} { l } x _ { 1 } \\x _ { 2 }\end{array} \right]

(Multiple Choice)
4.7/5
(25)

Find the matrix of the quadratic form. - 4x12+5x22+3x324x1x2+x2x34 x _ { 1 } ^ { 2 } + 5 x _ { 2 } ^ { 2 } + 3 x _ { 3 } ^ { 2 } - 4 x _ { 1 } x _ { 2 } + x _ { 2 } x _ { 3 }

(Multiple Choice)
4.9/5
(36)

Find the maximum value of Q(x)Q ( x ) subject to the constraints xTx=1_x T _ { x } = 1 and xTu=0_x { T } \mathbf { _u } = 0 , where uu is a unit eigenvector corresponding to the greatest eigenvalue of the matrix of the quadratic form. - Q(x)=3x12+8x22+4x23Q ( x ) = 3 x { } _ { 1 } ^ { 2 } + 8 x { } _ { 2 } ^ { 2 } + 4x \frac { 2 } { 3 }

(Multiple Choice)
4.9/5
(34)

Find a singular value decomposition of the matrix A. - A=[4114]A = \left[ \begin{array} { r r } 4 & - 1 \\- 1 & 4\end{array} \right]

(Multiple Choice)
4.9/5
(46)

Convert the matrix of observations to mean-deviation form, and construct the sample covariance matrix. - S=[605555280]\mathrm { S } = \left[ \begin{array} { r c } 60 & - 55 \\- 55 & 280\end{array} \right]

(Multiple Choice)
4.8/5
(36)

Determine whether the matrix is symmetric. - [1650]\left[ \begin{array} { l l } 1 & 6 \\5 & 0\end{array} \right]

(Multiple Choice)
4.9/5
(33)

 Compute the quadratic form xTAx for the given matrix A and vector x\text { Compute the quadratic form } x ^ { T } A x \text { for the given matrix } A \text { and vector } x \text {. } - A=[480812022],x=[x1x2x3]A = \left[ \begin{array} { r r r } 4 & 8 & 0 \\8 & 1 & 2 \\0 & 2 & - 2\end{array} \right] , x = \left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 }\end{array} \right]

(Multiple Choice)
4.7/5
(28)

Determine whether the matrix is symmetric. - [394952420]\left[ \begin{array} { r r r } 3 & 9 & 4 \\9 & - 5 & - 2 \\4 & - 2 & 0\end{array} \right]

(Multiple Choice)
4.9/5
(29)

Find the singular values of the matrix. - [8006]\left[ \begin{array} { r r } - 8 & 0 \\0 & 6\end{array} \right]

(Multiple Choice)
4.7/5
(38)

Find the singular values of the matrix. - [155515]\left[ \begin{array} { r r r } 1 & 5 & 5 \\ 5 & 1 & - 5 \end{array} \right]

(Multiple Choice)
4.7/5
(36)

Make a change of variable, x = Py, that transforms the given quadratic form into a quadratic form with no cross-product term. Give P and the new quadratic form. - Q(x)=5x12+8x22+4x1x2Q ( x ) = 5 x _ { 1 } ^ { 2 } + 8 x _ { 2 } ^ { 2 } + 4 x _ { 1 } x _ { 2 }

(Multiple Choice)
4.8/5
(35)
Showing 1 - 20 of 25
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)