Exam 5: Eigenvalues and Eigenvectors

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the eigenvalues of the given matrix. - [1463616]\left[ \begin{array} { r r } - 14 & - 6 \\36 & 16\end{array} \right]

Free
(Multiple Choice)
4.9/5
(37)
Correct Answer:
Verified

A

For the given matrix A, find a basis for the corresponding eigenspace for the given eigenvalue. - A=[1666166613],λ=7A = \left[ \begin{array} { r r r } 1 & 6 & 6 \\6 & 1 & - 6 \\- 6 & 6 & 13\end{array} \right] , \lambda = 7

Free
(Multiple Choice)
4.8/5
(32)
Correct Answer:
Verified

A

The characteristic polynomial of a 5 × 5 matrix is given below. Find the eigenvalues and their multiplicities. -  Find a formula for Ak, given that A=PDP1, where P and D are given below. \text { Find a formula for } A ^ { k } \text {, given that } A = P D P - 1 \text {, where } P \text { and } D \text { are given below. }

Free
(Essay)
4.8/5
(32)
Correct Answer:
Answered by Examlex AI Copilot

To find the eigenvalues and their multiplicities, we first need to factor the characteristic polynomial of the 5 × 5 matrix. Once we have the factors, we can determine the eigenvalues and their multiplicities.

As for the formula for AkA^k , given that A=PDP1A = PDP^{-1} , where PP and DD are given below, we can use the formula Ak=PDkP1A^k = PD^kP^{-1} to find the kth power of AA . This formula allows us to easily compute higher powers of AA using the diagonal matrix DD and the invertible matrix PP .

The characteristic polynomial of a 5 × 5 matrix is given below. Find the eigenvalues and their multiplicities. - λ524λ4+189λ3486λ2\lambda ^ { 5 } - 24 \lambda ^ { 4 } + 189 \lambda ^ { 3 } - 486 \lambda ^ { 2 }

(Multiple Choice)
4.7/5
(34)

Solve the initial value problem. - A=[1666323]A = \left[ \begin{array} { r r } 16 & - 6 \\63 & - 23\end{array} \right]

(Multiple Choice)
4.9/5
(39)

For the given matrix and eigenvalue, find an eigenvector corresponding to the eigenvalue. - A=[132405],λ=5A = \left[ \begin{array} { l l } - 13 & 2 \\- 40 & 5\end{array} \right] , \lambda = - 5

(Multiple Choice)
4.8/5
(30)

Consider the difference equation xk+1=Axk\mathbf { x } _ { \mathbf { k } + 1 } = \mathrm { Ax } _ { \mathbf { k } } , where A\mathrm { A } has eigenvalues and corresponding eigenvectors v1\mathbf { v } _ { 1 } , v2\mathbf { v } _ { 2 } , and v3\mathbf { v } _ { 3 } given below. Find the general solution of this difference equation if x0x _ { 0 } is given as below. - λ1=1.3,λ2=0.8,λ3=0.6,v1=[661],v2=[212],v3=[122]\lambda _ { 1 } = 1.3 , \lambda _ { 2 } = 0.8 , \lambda _ { 3 } = 0.6 , \mathbf { v } _ { 1 } = \left[ \begin{array} { r } - 6 \\ 6 \\ 1 \end{array} \right] , \mathbf { v } _ { 2 } = \left[ \begin{array} { l } 2 \\ 1 \\ 2 \end{array} \right] , \mathbf { v } _ { 3 } = \left[ \begin{array} { r } 1 \\ 2 \\ - 2 \end{array} \right] , and x0=[33337]\mathbf { x } _ { 0 } = \left[ \begin{array} { r } - 33 \\ 33 \\ - 7 \end{array} \right]

(Multiple Choice)
4.9/5
(43)

Find the eigenvalues of the given matrix. - [561027549]\left[ \begin{array} { r r } 56 & 10 \\- 275 & - 49\end{array} \right]

(Multiple Choice)
4.8/5
(32)

Find the characteristic equation of the given matrix. - A=[8152031100660005]A = \left[ \begin{array} { r r r r } 8 & - 1 & 5 & 2 \\0 & 3 & 1 & - 1 \\0 & 0 & - 6 & - 6 \\0 & 0 & 0 & - 5\end{array} \right]

(Multiple Choice)
4.8/5
(33)

 Find the matrix of the linear transformation T:VW relative to B and C\text { Find the matrix of the linear transformation } \mathrm { T } : \mathrm { V } \rightarrow \mathrm { W } \text { relative to } \mathrm { B } \text { and } \mathrm { C } \text {. } -Suppose B={b1,b2,b3}B = \left\{ b _ { 1 } , b _ { 2 } , b _ { 3 } \right\} is a basis for VV and C={c1,c2}C = \left\{ c _ { 1 } , c _ { 2 } \right\} is a basis for WW . Let TT be defined by =3+ =8-8 =3+2

(Multiple Choice)
4.8/5
(25)

For the given matrix and eigenvalue, find an eigenvector corresponding to the eigenvalue. - A=[1856017],λ=2A = \left[ \begin{array} { r r } - 18 & - 5 \\ 60 & 17 \end{array} \right] , \lambda = 2

(Multiple Choice)
4.9/5
(32)

Diagonalize the matrix A, if possible. That is, find an invertible matrix P and a diagonal matrix D such that A=PDP1A = P D P^{ - 1} - A=[6000060014601206]A = \left[ \begin{array} { r r r r } 6 & 0 & 0 & 0 \\0 & 6 & 0 & 0 \\1 & - 4 & - 6 & 0 \\- 1 & 2 & 0 & - 6\end{array} \right]

(Multiple Choice)
4.9/5
(34)

The characteristic polynomial of a 5 × 5 matrix is given below. Find the eigenvalues and their multiplicities. - λ5+17λ4+72λ3\lambda ^ { 5 } + 17 \lambda ^ { 4 } + 72 \lambda ^ { 3 }

(Multiple Choice)
4.9/5
(30)

Diagonalize the matrix A, if possible. That is, find an invertible matrix P and a diagonal matrix D such that A=PDP1A = P D P^{ - 1} - A=[200120002]A = \left[ \begin{array} { l l l } 2 & 0 & 0 \\1 & 2 & 0 \\0 & 0 & 2\end{array} \right]

(Multiple Choice)
4.8/5
(38)

Find the characteristic equation of the given matrix. - A=[9643076800590009]A = \left[ \begin{array} { r r r r } 9 & 6 & 4 & 3 \\0 & 7 & - 6 & 8 \\0 & 0 & 5 & 9 \\0 & 0 & 0 & 9\end{array} \right]

(Multiple Choice)
4.8/5
(37)

Use the inverse power method to determine the smallest eigenvalue of the matrix A. -Assume that the eigenvalues are roughly 1.3, 2.1, and 15. A=[10.5001.50112]A = \left[ \begin{array} { r r r } 1 & 0.5 & 0 \\0 & 1.5 & 0 \\- 1 & 1 & 2\end{array} \right]

(Multiple Choice)
4.7/5
(43)

Diagonalize the matrix A, if possible. That is, find an invertible matrix P and a diagonal matrix D such that A=PDP1A = P D P^{ - 1} - A=[900009001641160009]A=\left[\begin{array}{rrrr}9 & 0 & 0 & 0 \\0 & 9 & 0 & 0 \\-16 & 4 & 1 & 16 \\0 & 0 & 0 & 9\end{array}\right]

(Multiple Choice)
4.8/5
(34)

 Find the matrix of the linear transformation T:VW relative to B and C\text { Find the matrix of the linear transformation } \mathrm { T } : \mathrm { V } \rightarrow \mathrm { W } \text { relative to } \mathrm { B } \text { and } \mathrm { C } \text {. } -Suppose B={b1,b2}B = \left\{ b _ { 1 } , b _ { 2 } \right\} is a basis for VV and C={c1,c2,c3}C = \left\{ c _ { 1 } , c _ { 2 } , c _ { 3 } \right\} is a basis for WW . Let TT be defined by =5+6-5 T =5+12+7

(Multiple Choice)
4.7/5
(35)

For the given matrix A, find a basis for the corresponding eigenspace for the given eigenvalue. - A=[400106030162],λ=4A = \left[ \begin{array} { r r r } - 4 & 0 & 0 \\ - 10 & 6 & 0 \\ - 30 & 16 & - 2 \end{array} \right] , \lambda = - 4

(Multiple Choice)
4.9/5
(37)

Diagonalize the matrix A, if possible. That is, find an invertible matrix P and a diagonal matrix D such that A=PDP1A = P D P^{ - 1} - A=[1139050634]A = \left[ \begin{array} { r r r } - 11 & 3 & - 9 \\0 & - 5 & 0 \\6 & - 3 & 4\end{array} \right]

(Multiple Choice)
4.8/5
(34)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)