Exam 4: Vector Spaces

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

If the set W is a vector space, find a set S of vectors that spans it. Otherwise, state that W is not a vector space. -Let H\mathrm { H } be the set of all points in the xy\mathrm { xy } -plane having at least one nonzero coordinate: H={[xy]:x,y\mathrm { H } = \left\{ \left[ \begin{array} { l } \mathrm { x } \\ \mathrm { y } \end{array} \right] : \mathrm { x } , \mathrm { y } \right. not both zero }\} . Determine whether H\mathrm { H } is a vector space. If it is not a vector space, determine which of the following properties it fails to satisfy: A: Contains zero vector B: Closed under vector addition C: Closed under multiplication by scalars

Free
(Multiple Choice)
4.9/5
(33)
Correct Answer:
Verified

C

Solve the problem. -Let H\mathrm { H } be the set of all points of the form (s,s1)( \mathrm { s } , \mathrm { s } - 1 ) . Determine whether H\mathrm { H } is a vector space. If it is not a vector space, determine which of the following properties it fails to satisfy. A: Contains zero vector B: Closed under vector addition C: Closed under multiplication by scalars

Free
(Multiple Choice)
4.9/5
(34)
Correct Answer:
Verified

A

Solve the problem. -Suppose a nonhomogeneous system of 15 linear equations in 17 unknowns has a solution for all possible constants on the right side of the equation. Is it possible to find 3 nonzero solutions of the associated homogeneous system that are linearly independent? Explain.

Free
(Essay)
4.8/5
(26)
Correct Answer:
Verified

If the null space of a 5×75 \times 7 matrix is 3 -dimensional, find Rank A, Dim Row A, and Dim Col A.
A) Rank A = 4, Dim Row A = 4, Dim Col A =3= 3
B) Rank A=4,Dim\mathrm { A } = 4 , \operatorname { Dim } Row A=4\mathrm { A } = 4 , DimColA=4\operatorname { Dim } \mathrm { Col } \mathrm {} \mathrm { A } = 4
C) Rank A =4,DimRowA=3= 4 , \operatorname { Dim } \operatorname { Row } \mathrm { A } = 3 , DimCol A=3\operatorname { Dim } \operatorname { Col~A } = 3
D) RankA=2,DimRowA=2\operatorname { Rank } A = 2 , \operatorname { Dim } \operatorname { Row } A = 2 , DimCol A=2\operatorname { Dim } \operatorname { Col~A } = 2

Determine whether {v1, v2, v3} is a basis for R3 -Let A=[137201271324951361191]\mathrm { A } = \left[ \begin{array} { r r r r r } - 1 & 3 & 7 & 2 & 0 \\ 1 & - 2 & - 7 & - 1 & 3 \\ 2 & - 4 & - 9 & - 5 & 1 \\ 3 & - 6 & - 11 & - 9 & - 1 \end{array} \right] and B=[13720010130053500000]B = \left[ \begin{array} { r r r r r } 1 & - 3 & - 7 & - 2 & 0 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 5 & - 3 & - 5 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right] It can be shown that matrix A\mathrm { A } is row equivalent to matrix B\mathrm { B } . Find a basis for ColA\mathrm { Col } \mathrm {} \mathrm { A } .

(Multiple Choice)
4.8/5
(35)

Find the new coordinate vector for the vector x after performing the specified change of basis. -If A\mathrm { A } is a 5×95 \times 9 matrix, what is the smallest possible dimension of Nul A\mathrm { A } ?

(Multiple Choice)
4.9/5
(35)

Find a matrix A such that W = Col A. - u=[252],A=[134105336]\mathbf { u } = \left[ \begin{array} { l } - 2 \\- 5 \\- 2\end{array} \right] , A = \left[ \begin{array} { r r r } 1 & - 3 & 4 \\- 1 & 0 & - 5 \\3 & - 3 & 6\end{array} \right]

(Multiple Choice)
4.8/5
(31)

Find the general solution of the difference equation. -Given that the signal yk=k2\mathrm { y } _ { \mathrm { k } } = \mathrm { k } ^ { 2 } is a solution of the given difference equation, find a description of all solutions of the equation. yk+2+6yk+17yk=16k+10\mathrm { y } \mathrm { k } + 2 + 6 \mathrm { y } \mathrm { k } + 1 - 7 \mathrm { yk } = 16 \mathrm { k } + 10 for all k\mathrm { k }

(Multiple Choice)
4.9/5
(37)

Determine whether the vector u belongs to the null space of the matrix A. -Find all values of hh such that y\mathbf { y } will be in the subspace of R3\mathfrak { R } ^ { 3 } spanned by v1,v2,v3\mathbf { v } _ { 1 } , \mathbf { v } _ { 2 } , \mathbf { v } _ { 3 } if v1=[124]\mathbf { v } _ { 1 } = \left[ \begin{array} { r } 1 \\ 2 \\ - 4 \end{array} \right] , v2=[348],v3=[100]\mathbf { v } _ { 2 } = \left[ \begin{array} { r } 3 \\ 4 \\ - 8 \end{array} \right] , \mathbf { v } _ { 3 } = \left[ \begin{array} { r } - 1 \\ 0 \\ 0 \end{array} \right] , and y=[42 h]\mathbf { y } = \left[ \begin{array} { l } 4 \\ 2 \\ \mathrm {~h} \end{array} \right] .

(Multiple Choice)
4.8/5
(43)

Find a matrix A such that W = Col A. -A: The set {p1,p2,p3}\left\{ \mathrm { p } _ { 1 } , \mathrm { p } _ { 2 } , \mathrm { p } _ { 3 } \right\} where p1(t)=1,p2(t)=t2,p3(t)=1+5t\mathrm { p } _ { 1 } ( \mathrm { t } ) = 1 , \mathrm { p } _ { 2 } ( \mathrm { t } ) = \mathrm { t } ^ { 2 } , \mathrm { p } _ { 3 } ( \mathrm { t } ) = 1 + 5 \mathrm { t } B: The set {p1,p2,p3}\left\{ p _ { 1 } , p _ { 2 } , p _ { 3 } \right\} where p1(t)=t,p2(t)=t2,p3(t)=2t+5t2p _ { 1 } ( t ) = t , p _ { 2 } ( t ) = t ^ { 2 } , p _ { 3 } ( t ) = 2 t + 5 t ^ { 2 } C:C : The set {p1,p2,p3}\left\{ \mathbf { p } _ { 1 } , \mathbf { p } _ { 2 } , \mathbf { p } _ { 3 } \right\} where p1(t)=1,p2(t)=t2,p3(t)=1+5t+t2\mathbf { p } _ { 1 } ( t ) = 1 , \mathbf { p } _ { 2 } ( t ) = t ^ { 2 } , \mathbf { p } _ { 3 } ( t ) = 1 + 5 t + t ^ { 2 }

(Multiple Choice)
4.9/5
(28)

Find a matrix A such that W = Col A. -A: The set {sint,tant}\{ \sin t , \tan t \} in C[0,1]C [ 0,1 ] B: The set {sintcost,cos2t}\{ \sin t \cos t , \cos 2 t \} in C[0,1]C [ 0,1 ] C:C : The set {cos2t,1+cos2t}\left\{ \cos ^ { 2 } t , 1 + \cos 2 t \right\} in C[0,1]C [ 0,1 ]

(Multiple Choice)
4.8/5
(38)

Determine whether {v1, v2, v3} is a basis for R3 -Given the set of vectors {[100],[012]}\left\{ \left[ \begin{array} { l } 1 \\ 0 \\ 0 \end{array} \right] , \left[ \begin{array} { l } 0 \\ 1 \\ 2 \end{array} \right] \right\} , decide which of the following statements is true: A: Set is linearly independent and spans R3R ^ { 3 } . Set is a basis for R3R ^ { 3 } . B: Set is linearly independent but does not span R3R ^ { 3 } . Set is not a basis for R3R ^ { 3 } . C: Set spans R3\mathscr { R } ^ { 3 } but is not linearly independent. Set is not a basis for R3R ^ { 3 } . D: Set is not linearly independent and does not span R3R ^ { 3 } . Set is not a basis for R3R ^ { 3 } .

(Multiple Choice)
4.8/5
(39)

Determine whether the signals are linearly independent. - 1k,2k,(3)k1 \mathrm { k } , 2 \mathrm { k } , ( - 3 ) ^ { \mathrm { k } }

(Multiple Choice)
4.9/5
(27)

Find a basis for the set of all solutions to the difference equation. -Consider two bases B={b1,b2,b3}B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } , \mathbf { b } _ { 3 } \right\} and C={c1,c2,c3}C = \left\{ \mathbf { c } _ { 1 } , \mathbf { c } _ { 2 } , \mathbf { c } _ { 3 } \right\} for a vector space VV such that b1=c1+2c3,b2=c1+5c2c3\mathbf { b } _ { 1 } = \mathbf { c } _ { 1 } + 2 \mathbf { c } _ { 3 } , \mathbf { b } _ { 2 } = \mathbf { c } _ { 1 } + 5 \mathbf { c } _ { 2 } - \mathbf { c } _ { 3 } , and b3=3c1c2\mathbf { b } _ { 3 } = 3 \mathbf { c } _ { 1 } - \mathbf { c } _ { 2 } . Suppose x=b1+4b2+b3\mathbf { x } = \mathbf { b } _ { 1 } + 4 \mathbf { b } _ { 2 } + \mathbf { b } _ { 3 } . That is, suppose [x]B=[141][ \mathbf { x } ] _ { B } = \left[ \begin{array} { l } 1 \\ 4 \\ 1 \end{array} \right] . Find [x]C[ \mathbf { x } ] _ { C } .

(Multiple Choice)
4.9/5
(38)

If the set W is a vector space, find a set S of vectors that spans it. Otherwise, state that W is not a vector space. - WW is the set of all vectors of the form [a+6b3b4aba]\left[ \begin{array} { c } a + 6 b \\ 3 b \\ 4 a - b \\ - a \end{array} \right] , where aa and bb are arbitrary real numbers.

(Multiple Choice)
5.0/5
(35)

Solve the problem. -Let H be the set of all polynomials having degree at most 4 and rational coefficients. Determine whether H is a vector space. If it is not a vector space, determine which of the following properties It fails to satisfy. A: Contains zero vector B: Closed under vector addition C: Closed under multiplication by scalars

(Multiple Choice)
4.9/5
(41)

Assume that the matrix A is row equivalent to B. Find a basis for the row space of the matrix A. - A=[1513024541]A = \left[ \begin{array} { r r r r r } 1 & 5 & 1 & 3 & 0 \\- 2 & - 4 & - 5 & - 4 & 1\end{array} \right]

(Multiple Choice)
4.8/5
(31)

Determine whether {v1, v2, v3} is a basis for b1=[11],b2=[11],x=[35]\mathbf { b } _ { 1 } = \left[ \begin{array} { l } 1 \\ 1 \end{array} \right] , \mathbf { b } _ { 2 } = \left[ \begin{array} { r } 1 \\ - 1 \end{array} \right] , \mathbf { x } = \left[ \begin{array} { r } 3 \\ - 5 \end{array} \right] , and B={b1,b2}B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } \right\}  Determine whether {v1, v2, v3} is a basis for   \mathbf { b } _ { 1 } = \left[ \begin{array} { l } 1 \\ 1 \end{array} \right] , \mathbf { b } _ { 2 } = \left[ \begin{array} { r } 1 \\ - 1 \end{array} \right] , \mathbf { x } = \left[ \begin{array} { r } 3 \\ - 5 \end{array} \right] , and  B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } \right\}      - B = \left\{ \left[ \begin{array} { r }  1 \\ - 3 \\ - 3 \end{array} \right] , \left[ \begin{array} { r }  - 3 \\ 8 \\ - 3 \end{array} \right] , \left[ \begin{array} { r }  2 \\ - 2 \\ 2 \end{array} \right] \right\} , [ \mathrm { x } ] B = \left[ \begin{array} { r }  - 4 \\ 2 \\ - 3 \end{array} \right] - B={[133],[383],[222]},[x]B=[423]B = \left\{ \left[ \begin{array} { r } 1 \\- 3 \\- 3\end{array} \right] , \left[ \begin{array} { r } - 3 \\8 \\- 3\end{array} \right] , \left[ \begin{array} { r } 2 \\- 2 \\2\end{array} \right] \right\} , [ \mathrm { x } ] B = \left[ \begin{array} { r } - 4 \\2 \\- 3\end{array} \right]

(Multiple Choice)
4.8/5
(30)

Find the specified change-of-coordinates matrix. - yk+2+5yk+16yk=0\mathrm { y } _ { \mathrm { k } + 2 } + 5 \mathrm { y } _ { \mathrm { k } + 1 } - 6 \mathrm { y } _ { \mathrm { k } } = 0 for all k\mathrm { k }

(Multiple Choice)
4.8/5
(32)

Solve the problem. -Suppose that demographic studies show that each year about 6% of a cityʹs population moves to the suburbs (and 94% stays in the city), while 4% of the suburban population moves to the city (and 96% remains in the suburbs). In the year 2000, 64% of the population of the region lived in the City and 36% lived in the suburbs. What is the distribution of the population in 2002? For Simplicity, ignore other influences on the population such as births, deaths, and migration into and Out of the city/suburban region.

(Multiple Choice)
4.9/5
(29)

Determine whether {v1, v2, v3} is a basis for R3 - v1=[248],v2=[103],v3=[4414]\mathbf { v } _ { 1 } = \left[ \begin{array} { r } - 2 \\4 \\- 8\end{array} \right] , \mathbf { v } _ { 2 } = \left[ \begin{array} { l } 1 \\0 \\3\end{array} \right] , \mathbf { v } _ { 3 } = \left[ \begin{array} { r } 4 \\- 4 \\14\end{array} \right]

(Multiple Choice)
4.9/5
(40)
Showing 1 - 20 of 47
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)