Exam 3: Graphs and Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Describe how the graph of the equation relates to the graph of y y=x2y = x ^ { 2 } - f(x)=5x2f ( x ) = 5 x ^ { 2 }

(Multiple Choice)
4.7/5
(37)

Determine the intervals of the domain over which the function is continuous. - P(1,3)P(-1,-3)  Determine the intervals of the domain over which the function is continuous. - P(-1,-3)

(Multiple Choice)
5.0/5
(30)

Evaluate the function. -Find g(a1)g ( a - 1 ) when g(x)=2x+5g ( x ) = 2 x + 5

(Multiple Choice)
5.0/5
(32)

Decide whether the relation defines a function. -Decide whether the relation defines a function. -

(Multiple Choice)
4.8/5
(38)

Graph the equation by plotting points. - y=x22y=x^{2}-2  Graph the equation by plotting points. - y=x^{2}-2

(Multiple Choice)
5.0/5
(41)

Graph the point symmetric to the given point. -  Plot the point (2,9), then plot the point that is symmetric to (2,9) with respect to the y-axis. \text { Plot the point } ( - 2,9 ) \text {, then plot the point that is symmetric to } ( - 2,9 ) \text { with respect to the } y \text {-axis. }  Graph the point symmetric to the given point. - \text { Plot the point } ( - 2,9 ) \text {, then plot the point that is symmetric to } ( - 2,9 ) \text { with respect to the } y \text {-axis. }

(Multiple Choice)
4.8/5
(32)

Find the slope of the line satisfying the given conditions. -through (1,7)( 1 , - 7 ) and (9,9)( - 9,9 )

(Multiple Choice)
4.8/5
(38)

Decide whether the relation defines a function. -Decide whether the relation defines a function. -

(Multiple Choice)
4.9/5
(31)

For the given functions f and g , find the indicated composition. - f(x)=,g(x)=8x-12 (fgg)(x)

(Multiple Choice)
4.8/5
(32)

Graph the function. - f(x)={2, if x>52, if x5f(x)=\left\{\begin{array}{ll}2, & \text { if } x>-5 \\-2, & \text { if } x \leq-5\end{array}\right.  Graph the function. - f(x)=\left\{\begin{array}{ll} 2, & \text { if } x>-5 \\ -2, & \text { if } x \leq-5 \end{array}\right.

(Multiple Choice)
4.9/5
(38)

Match the description with the correct symbolic expression. -a linear function whose graph has a slope of 8

(Multiple Choice)
4.9/5
(39)

Determine whether the three points are the vertices of a right triangle. -(-5, 2), (0, 2), (0, 4)

(Multiple Choice)
4.9/5
(38)

Find the specified domain. -Use the graphs to find the value of (fg)(3)\left( \frac { f } { g } \right) ( 3 ) .  Find the specified domain. -Use the graphs to find the value of  \left( \frac { f } { g } \right) ( 3 ) .

(Multiple Choice)
4.9/5
(36)

Graph the function. - f(x)=7x2f(x)=7 x^{2}  Graph the function. - f(x)=7 x^{2}

(Multiple Choice)
4.8/5
(31)

Provide an appropriate response. -If a vertical line is drawn through the point (-5, 6), where will it intersect the x-axis?

(Multiple Choice)
4.8/5
(38)

The graph of y1\mathrm { y } _ { 1 } is shown in the standard viewing window. Which is the only choice that could possibly be the solution of the equation y1=0\mathrm { y } _ { 1 } = 0 ? - The graph of  \mathrm { y } _ { 1 }  is shown in the standard viewing window. Which is the only choice that could possibly be the solution of the equation  \mathrm { y } _ { 1 } = 0  ?   -   - 90 , - \frac { 91 } { 10 } , \frac { 91 } { 10 } , 85 90,9110,9110,85- 90 , - \frac { 91 } { 10 } , \frac { 91 } { 10 } , 85

(Multiple Choice)
4.7/5
(43)

Find the requested function value. -Find (gf)(1)( g \circ f ) ( - 1 ) when f(x)=x78f ( x ) = \frac { x - 7 } { 8 } and g(x)=8x+1g ( x ) = 8 x + 1

(Multiple Choice)
4.7/5
(33)

Graph the line and give the domain and the range. - x+1=0x+1=0  Graph the line and give the domain and the range. - x+1=0

(Multiple Choice)
4.8/5
(44)

Graph the line described. -  through (2,4);m=5\text { through } ( - 2 , - 4 ) ; m = 5  Graph the line described. - \text { through } ( - 2 , - 4 ) ; m = 5

(Multiple Choice)
4.7/5
(38)

Give the domain and range of the relation. - xy=7x y = - 7

(Multiple Choice)
4.9/5
(33)
Showing 361 - 380 of 522
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)