Exam 9: Matrices and Determinants

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use Determinants to Identify Inconsistent Systems and Systems with Dependent Equations - 9x+y=32 9x+y=41

(Multiple Choice)
4.8/5
(30)

Apply Gaussian Elimination to Systems with More Variables than Equations - x+y+z=9 2x-3y+4z=7

(Multiple Choice)
4.8/5
(31)

Multiply Matrices - A=[1322],B=[2015]A = \left[ \begin{array} { r r } - 1 & 3 \\2 & 2\end{array} \right] , B = \left[ \begin{array} { l l } - 2 & 0 \\- 1 & 5\end{array} \right]

(Multiple Choice)
4.8/5
(26)

Use Inverses to Solve Matrix Equations - 5x+2y+2z=32 4x+2y-2z=32 8x+2y+8z=38

(Multiple Choice)
4.8/5
(30)

Solve Matrix Equations -Let A=[944936]\mathrm { A } = \left[ \begin{array} { r r } 9 & 4 \\ 4 & 9 \\ - 3 & 6 \end{array} \right] and B=[219954];XB=A\mathrm { B } = \left[ \begin{array} { r r } - 2 & - 1 \\ 9 & - 9 \\ - 5 & 4 \end{array} \right] ; \quad \mathrm { X } - \mathrm { B } = \mathrm { A }

(Multiple Choice)
4.8/5
(39)

Multiplicative Inverses of Matrices and Matrix Equations 1 Find the Multiplicative Inverse of a Square Matrix - A=[1600011000180001]\mathrm { A } = \left[ \begin{array} { r r r r } 1 & 6 & 0 & 0 \\0 & 1 & - 1 & 0 \\0 & 0 & 1 & - 8 \\0 & 0 & 0 & 1\end{array} \right]

(Multiple Choice)
4.8/5
(37)

Model Applied Situations with Matrix Operations -Using the same color levels from the instructions, write a 3 × 3 matrix A that represents the letter L in dark grey on a white background. Then find a 3 × 3 matrix B so that A + B lightens only the letter L from dark grey to light grey.

(Multiple Choice)
4.9/5
(37)

Model Applied Situations with Matrix Operations -Adjust the contrast by changing the black to dark grey and the light grey to white. Use matrix addition to accomplish this.

(Multiple Choice)
4.9/5
(32)

Add and Subtract Matrices -Let A=[354]A = \left[ \begin{array} { r } 3 \\ - 5 \\ - 4 \end{array} \right] and B=[539]B = \left[ \begin{array} { r } - 5 \\ 3 \\ 9 \end{array} \right] . Find A+BA + B .

(Multiple Choice)
4.8/5
(43)

Use Matrices and Gaussian Elimination to Solve Systems - x+y+z-w= 6 2x-y+3z+4w= -4 4x+2y-z-w= -13 -x-2y+4z+3w= 12

(Multiple Choice)
4.9/5
(35)

Model Applied Situations with Matrix Operations -Adjust the contrast by changing the black to light grey and the light grey to black. Use matrix addition to accomplish this.

(Multiple Choice)
4.8/5
(32)

Evaluate a Third-Order Determinant -The area of a triangle with vertices (x1,y1),(x2,y2)\left( x _ { 1 } , y _ { 1 } \right) , \left( x _ { 2 } , y _ { 2 } \right) , and (x3,y3)\left( x _ { 3 } , y _ { 3 } \right) is  Area =±12x1y11x2y21x3y31\text { Area } = \pm \frac { 1 } { 2 } \left| \begin{array} { l l l } x _ { 1 } & y _ { 1 } & 1 \\x _ { 2 } & y _ { 2 } & 1 \\x _ { 3 } & y _ { 3 } & 1\end{array} \right| \text {, } where the symbol ±\pm indicates that the appropriate sign should be chosen to yield a positive area. Use this formula to find the area of a triangle whose vertices are (6,10),(8,8)( 6,10 ) , ( 8 , - 8 ) , and (9,4)( - 9 , - 4 ) .

(Multiple Choice)
4.7/5
(33)

Perform Scalar Multiplication -Let A=[132]\mathrm { A } = \left[ \begin{array} { r } 1 \\ - 3 \\ 2 \end{array} \right] and B=[132]\mathrm { B } = \left[ \begin{array} { r } - 1 \\ 3 \\ - 2 \end{array} \right] . Find A4 B\mathrm { A } - 4 \mathrm {~B} .

(Multiple Choice)
4.9/5
(34)

Multiply Matrices - A=[161342],B=[147]A = \left[ \begin{array} { r r r } 1 & - 6 & 1 \\- 3 & 4 & - 2\end{array} \right] , B = \left[ \begin{array} { l } - 1 \\- 4 \\- 7\end{array} \right]

(Multiple Choice)
4.8/5
(34)

Apply Gaussian Elimination to Systems with More Variables than Equations - x+y+z=7 x-y+2z=7

(Multiple Choice)
4.7/5
(33)

Solve a System of Linear Equations in Two Variables Using Cramer's Rule - 4x-2y=26 4x+3y=51

(Multiple Choice)
4.9/5
(44)

Inconsistent and Dependent Systems and Their Applications 1 Apply Gaussian Elimination to Systems Without Unique Solutions - x+y+z+w =7 3x-2z+5w =11 -4x+3y+w =4 -x-y-z-w =6

(Multiple Choice)
4.9/5
(30)

Write the system of linear equations represented by the augmented matrix. Use x, y, z, and, if necessary, w for the variables. - [5102121810690061103034]\left[ \begin{array} { r r r r | r } 5 & 1 & 0 & 2 & 12 \\- 1 & 8 & 1 & 0 & - 6 \\9 & 0 & 0 & 6 & - 11 \\0 & 3 & 0 & - 3 & - 4\end{array} \right]

(Multiple Choice)
4.9/5
(31)

Solve Matrix Equations -Let A=[212300122]\mathrm { A } = \left[ \begin{array} { r r r } 2 & 1 & - 2 \\ 3 & 0 & 0 \\ 1 & - 2 & 2 \end{array} \right] and B=[122011302];2 B2 A=X\mathrm { B } = \left[ \begin{array} { r r r } - 1 & - 2 & - 2 \\ 0 & 1 & 1 \\ 3 & 0 & 2 \end{array} \right] ; \quad 2 \mathrm {~B} - 2 \mathrm {~A} = \mathrm { X }

(Multiple Choice)
4.8/5
(28)

Inconsistent and Dependent Systems and Their Applications 1 Apply Gaussian Elimination to Systems Without Unique Solutions - x+y+z=7 x-y+2z=7 2x+3z=14

(Multiple Choice)
4.7/5
(29)
Showing 41 - 60 of 152
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)