Exam 9: Matrices and Determinants

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve a System of Linear Equations in Three Variables Using Cramer's Rule - 3x+7z=31 5x+3y+2z=34 -9x-5y=-44

(Multiple Choice)
4.9/5
(35)

Encode and Decode Messages -Use the coding matrix A=[111112123]A = \left[ \begin{array} { r r r } 1 & 1 & 1 \\ - 1 & 1 & 2 \\ 1 & 2 & 3 \end{array} \right] and its inverse A1=[111523312]A ^ { - 1 } = \left[ \begin{array} { r r r } - 1 & - 1 & 1 \\ 5 & 2 & - 3 \\ - 3 & - 1 & 2 \end{array} \right] to decode the cryptogram [37163538204824060]\left[ \begin{array} { l l l } 37 & 16 & 35 \\ 38 & 20 & 4 \\ 82 & 40 & 60 \end{array} \right] .

(Multiple Choice)
4.8/5
(37)

Multiplicative Inverses of Matrices and Matrix Equations 1 Find the Multiplicative Inverse of a Square Matrix - A=[2011111112100011],B=[2002210322152213]A = \left[ \begin{array} { r r r r } 2 & 0 & 1 & 1 \\1 & 1 & - 1 & - 1 \\- 1 & - 2 & 1 & 0 \\0 & 0 & 1 & 1\end{array} \right] , \quad B = \left[ \begin{array} { r r r r } 2 & 0 & 0 & - 2 \\- 2 & 1 & 0 & 3 \\- 2 & 2 & 1 & 5 \\2 & - 2 & - 1 & - 3\end{array} \right]

(Multiple Choice)
4.8/5
(32)

Understand What is Meant by Equal Matrices - [x+3y+475]=[737z]\left[ \begin{array} { r r } x + 3 & y + 4 \\7 & 5\end{array} \right] = \left[ \begin{array} { r r } 7 & - 3 \\7 & z\end{array} \right]

(Multiple Choice)
4.8/5
(48)

Encode and Decode Messages -Use the coding matrix A=[1325]A = \left[ \begin{array} { r r } - 1 & - 3 \\ 2 & 5 \end{array} \right] to encode the message CARE.

(Multiple Choice)
4.8/5
(25)

Use Determinants to Identify Inconsistent Systems and Systems with Dependent Equations - 3x+y=10 6x+2y=20

(Multiple Choice)
4.8/5
(27)

Multiplicative Inverses of Matrices and Matrix Equations 1 Find the Multiplicative Inverse of a Square Matrix - A=[10110],B=[01110]A = \left[ \begin{array} { l l } 10 & 1 \\- 1 & 0\end{array} \right] , \quad B = \left[ \begin{array} { r r } 0 & 1 \\- 1 & 10\end{array} \right]

(Multiple Choice)
4.7/5
(24)

Use Matrices and Gauss-Jordan Elimination to Solve Systems - -4x+7y-z=39 x+6y+9z=62 -5x+y+z=-1

(Multiple Choice)
4.9/5
(34)

Perform Scalar Multiplication -Let A=[938168966]A = \left[ \begin{array} { r r r } - 9 & - 3 & 8 \\ - 1 & - 6 & 8 \\ 9 & 6 & 6 \end{array} \right] and B=[389541619]B = \left[ \begin{array} { r r r } - 3 & 8 & 9 \\ - 5 & - 4 & 1 \\ 6 & 1 & 9 \end{array} \right] . Find 2A - 4B.

(Multiple Choice)
4.8/5
(39)

Multiplicative Inverses of Matrices and Matrix Equations 1 Find the Multiplicative Inverse of a Square Matrix - A=[100110111],B=[100110011]A = \left[ \begin{array} { l l l } 1 & 0 & 0 \\1 & 1 & 0 \\1 & 1 & 1\end{array} \right] , \quad B = \left[ \begin{array} { r r r } 1 & 0 & 0 \\- 1 & 1 & 0 \\0 & - 1 & 1\end{array} \right]

(Multiple Choice)
4.7/5
(40)

Evaluate a Third-Order Determinant -The equation of a line passing through two distinct points (x1,y1)\left( \mathrm { x } _ { 1 } , \mathrm { y } _ { 1 } \right) and (x2,y2)\left( \mathrm { x } _ { 2 } , \mathrm { y } _ { 2 } \right) is given by xy1x2y21x3y31=0\left| \begin{array} { l l l } x & y & 1 \\ x _ { 2 } & y _ { 2 } & 1 \\ x _ { 3 } & y _ { 3 } & 1 \end{array} \right| = 0 . Use the determinant to write an equation for the line passing through (9,5)( 9 , - 5 ) and (8,3)( - 8,3 ) . Express the line's equation in standard form.

(Multiple Choice)
4.9/5
(36)

Write a system of linear equations in three variables, and then use matrices to solve the system. -There were approximately 100,000 vehicles sold at a particular dealership last year. The dealer tracks sales by age group for marketing purposes. The percentage of 36- to 59-year-old buyers and the percentage of buyers 60 and older combined exceeds the percentage of buyers 35 and younger by 40%. If the percentage of buyers in the oldest group is doubled, it is 34% less than the percentage of users in the middle group. Find the percentage of buyers in each of the three age groups.

(Multiple Choice)
4.9/5
(31)

Encode and Decode Messages -Use the coding matrix A=[12123111]A = \left[ \begin{array} { r r r } 1 & - 2 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{array} \right] to encode the message COME_HERE.

(Multiple Choice)
4.9/5
(37)

Evaluate a Third-Order Determinant - 700596872\left| \begin{array} { l l l } 7 & 0 & 0 \\5 & 9 & 6 \\8 & 7 & 2\end{array} \right|

(Multiple Choice)
4.9/5
(26)

Write the system of linear equations represented by the augmented matrix. Use x, y, z, and, if necessary, w for the variables. Then use back-substitution to find the solution. - [111130144000161700017]\left[ \begin{array} { r r r r | r } 1 & 1 & - 1 & 1 & - 3 \\ 0 & 1 & - 4 & 4 & 0 \\ 0 & 0 & 1 & 6 & 17 \\ 0 & 0 & 0 & 1 & 7 \end{array} \right]

(Multiple Choice)
4.9/5
(33)

Matrix Operations and Their Applications 1 Use Matrix Notation - [376733e1513π6912128139615];a34\left[ \begin{array} { c c c c c } 3 & 7 & 6 & 7 & - 3 \\3 & - e & - 15 & - 13 & \pi \\- 6 & 9 & - 12 & 12 & 8 \\\frac { 1 } { 3 } & 9 & 6 & - 1 & 5\end{array} \right] ; a _ { 34 }

(Multiple Choice)
4.9/5
(43)

Add and Subtract Matrices -A) [8117056]\left[ \begin{array} { r r } - 8 & 1 \\- 17 & 0 \\5 & - 6\end{array} \right]

(Multiple Choice)
4.9/5
(33)

Multiplicative Inverses of Matrices and Matrix Equations 1 Find the Multiplicative Inverse of a Square Matrix - A=[4650]A = \left[ \begin{array} { l l } - 4 & 6 \\ - 5 & 0 \end{array} \right]

(Multiple Choice)
4.8/5
(35)

Understand What is Meant by Equal Matrices - [6879]=[xy7z]\left[ \begin{array} { r r } 6 & - 8 \\- 7 & 9\end{array} \right] = \left[ \begin{array} { r r } x y \\- 7 & z\end{array} \right]

(Multiple Choice)
4.9/5
(34)

Inconsistent and Dependent Systems and Their Applications 1 Apply Gaussian Elimination to Systems Without Unique Solutions - x+3y+2z=11 4y+9z=-12 x+7y+11z=-1

(Multiple Choice)
4.9/5
(36)
Showing 121 - 140 of 152
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)