Exam 9: Matrices and Determinants

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the system using the inverse that is given for the coefficient matrix. - x+2y+3z=6x + 2 y + 3 z = 6 x+y+z=8x + y + z = - 8 x2z=12x \quad - 2 z = 12 The inverse of [123111102]\left[ \begin{array} { l l l } 1 & 2 & 3 \\ 1 & 1 & 1 \\ 1 & 0 & - 2 \end{array} \right] is [241352121]\left[ \begin{array} { r r r } - 2 & 4 & - 1 \\ 3 & - 5 & 2 \\ - 1 & 2 & - 1 \end{array} \right] .

(Multiple Choice)
4.8/5
(44)

Solve Problems Involving Systems Without Unique Solutions -A company that manufactures products A, B, and C does both assembly and testing. The hours needed to assemble and test each product are shown in the table below. Hours needed weekly to assemble Hours needed weekly to test Product A 1 4 Product B 1 5 Product C 2 10 The company has exactly 27 hours per week available for assembly and 120 hours per week available for testing. If the company must produce tt units of Product CC this week, how many units of Products AA and BB can they produce?

(Multiple Choice)
4.8/5
(36)

Determinants and Cramer's Rule 1 Evaluate a Second-Order Determinant - 16110106\left| \begin{array} { c c } \frac { 1 } { 6 } & - \frac { 1 } { 10 } \\10 & 6\end{array} \right|

(Multiple Choice)
4.8/5
(36)

Multiply Matrices - A=[131203],B=[301103]A = \left[ \begin{array} { r r r } 1 & 3 & - 1 \\2 & 0 & 3\end{array} \right] , B = \left[ \begin{array} { r r } 3 & 0 \\- 1 & 1 \\0 & 3\end{array} \right]

(Multiple Choice)
4.9/5
(37)

Add and Subtract Matrices -Let A=[1031]\mathrm { A } = \left[ \begin{array} { r r } - 1 & 0 \\ 3 & 1 \end{array} \right] and B=[1331]\mathrm { B } = \left[ \begin{array} { r r } - 1 & 3 \\ 3 & 1 \end{array} \right] . Find AB\mathrm { A } - \mathrm { B } .

(Multiple Choice)
4.7/5
(40)

Solve the system using the inverse that is given for the coefficient matrix. - x+2y+3z=12x + 2 y + 3 z = 12 x+y+z=5x + y + z = - 5 2x+2y+z=12 x + 2 y + z = 1\quad The inverse of [123111221]\left[ \begin{array} { l l l } 1 & 2 & 3 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{array} \right] is [141152021]\left[ \begin{array} { r r r } - 1 & 4 & - 1 \\ 1 & - 5 & 2 \\ 0 & 2 & - 1 \end{array} \right]

(Multiple Choice)
4.8/5
(33)

Perform Scalar Multiplication -Let A=[3602]\mathrm { A } = \left[ \begin{array} { r r } - 3 & 6 \\ 0 & 2 \end{array} \right] . Find 4A.

(Multiple Choice)
4.8/5
(43)

Multiply Matrices - A=[321043],B=[3021]A = \left[ \begin{array} { r r r } 3 & - 2 & 1 \\ 0 & 4 & - 3 \end{array} \right] , B = \left[ \begin{array} { r r } 3 & 0 \\ - 2 & 1 \end{array} \right]

(Multiple Choice)
4.9/5
(28)

Add and Subtract Matrices -Let A=[5125]\mathrm { A } = \left[ \begin{array} { r r } - 5 & 1 \\ 2 & 5 \end{array} \right] and B=[6242]\mathrm { B } = \left[ \begin{array} { r r } 6 & 2 \\ 4 & - 2 \end{array} \right] . Find A+B\mathrm { A } + \mathrm { B } .

(Multiple Choice)
4.9/5
(35)

Evaluate a Third-Order Determinant -Determinants are used to show that three points lie on the same line (are collinear). If x1y11x2y21x3y31=0,\left| \begin{array} { l l l } x _ { 1 } & y _ { 1 } & 1 \\x _ { 2 } & y _ { 2 } & 1 \\x _ { 3 } & y _ { 3 } & 1\end{array} \right| = 0 , then the points (x1,y1),(x2,y2)\left( x _ { 1 } , y _ { 1 } \right) , \left( x _ { 2 } , y _ { 2 } \right) , and (x3,y3)\left( x _ { 3 } , y _ { 3 } \right) are collinear. If the determinant does not equal 0 , then the points are not collinear. Are the points (10,5),(0,6)( - 10,5 ) , ( 0 , - 6 ) , and (20,18)( - 20,18 ) collinear?

(Multiple Choice)
4.9/5
(37)

Multiplicative Inverses of Matrices and Matrix Equations 1 Find the Multiplicative Inverse of a Square Matrix - A=[5160],B=[016156]A = \left[ \begin{array} { r r } - 5 & - 1 \\ 6 & 0 \end{array} \right] , \quad B = \left[ \begin{array} { c c } 0 & \frac { 1 } { 6 } \\ - 1 & \frac { 5 } { 6 } \end{array} \right]

(Multiple Choice)
4.9/5
(38)

Use Matrices and Gaussian Elimination to Solve Systems - x-y+4z =15 2x+z =3 x+2y+z =-3

(Multiple Choice)
4.9/5
(24)
Showing 141 - 152 of 152
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)