Exam 9: Matrices and Determinants

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Apply Gaussian Elimination to Systems with More Variables than Equations - 3x+y+z-2w=10 2x+3y+3z+w=-5 2x+y+4z+11w=11

Free
(Multiple Choice)
4.7/5
(42)
Correct Answer:
Verified

A

Write a system of linear equations in three variables, and then use matrices to solve the system. -Ron attends a cocktail party (with his graphing calculator in his pocket). He wants to limit his food intake to 103 g protein, 93 g fat, and 135 g carbohydrate. According to the health conscious hostess, the marinated mushroom caps have 3 g protein, 5 g fat, and 9 g carbohydrate; the spicy meatballs have 14 g protein, 7 g fat, and 15 g carbohydrate; and the deviled eggs have 13 g protein, 15 g fat, and 6 g carbohydrate. How many of each snack can he eat to obtain his goal?

Free
(Multiple Choice)
4.8/5
(24)
Correct Answer:
Verified

A

Determinants and Cramer's Rule 1 Evaluate a Second-Order Determinant - 13164734\left| \begin{array} { c c } \frac { 1 } { 3 } & \frac { 1 } { 6 } \\ - \frac { 4 } { 7 } & \frac { 3 } { 4 } \end{array} \right|

Free
(Multiple Choice)
4.9/5
(34)
Correct Answer:
Verified

A

Evaluate a Third-Order Determinant - 635412233\left| \begin{array} { l l l } 6 & 3 & 5 \\4 & 1 & 2 \\2 & 3 & 3\end{array} \right|

(Multiple Choice)
4.7/5
(40)

Solve a System of Linear Equations in Three Variables Using Cramer's Rule - 9x-7y-3z=17 4x+3y-4z=45 8x-8y-8z=-8

(Multiple Choice)
4.8/5
(22)

Use Matrices and Gauss-Jordan Elimination to Solve Systems - -3x-y-7z =-76 3x+3y-6z =-27 -9x-2y+z =-23

(Multiple Choice)
4.7/5
(34)

Solve Matrix Equations -Let A=[1131]\mathrm { A } = \left[ \begin{array} { r } 1 - 1 \\ - 3 - 1 \end{array} \right] and B=[3415];X+A=B\mathrm { B } = \left[ \begin{array} { r } - 3 - 4 \\ 1 - 5 \end{array} \right] ; \quad \mathrm { X } + \mathrm { A } = \mathrm { B }

(Multiple Choice)
4.9/5
(34)

Inconsistent and Dependent Systems and Their Applications 1 Apply Gaussian Elimination to Systems Without Unique Solutions - x+8y+8z =8 7x+7y+z =1 8x+15y+9z =-9

(Multiple Choice)
4.7/5
(34)

Evaluate a Third-Order Determinant -Determinants are used to show that three points lie on the same line (are collinear). If x1y11x2y21x3y31=0,\left| \begin{array} { l l l } x _ { 1 } & y _ { 1 } & 1 \\x _ { 2 } & y _ { 2 } & 1 \\x _ { 3 } & y _ { 3 } & 1\end{array} \right| = 0 , then the points (x1,y1),(x2,y2)\left( x _ { 1 } , y _ { 1 } \right) , \left( x _ { 2 } , y _ { 2 } \right) , and (x3,y3)\left( x _ { 3 } , y _ { 3 } \right) are collinear. If the determinant does not equal 0 , then the points are not collinear. Are the points (4,4),(0,3)( 4 , - 4 ) , ( 0,3 ) , and (20,32)( 20 , - 32 ) collinear?

(Multiple Choice)
4.9/5
(35)

Perform Matrix Row Operations - [206010451133027421]15R1\left[ \begin{array} { r r r | r } - 20 & 60 & 10 & 45 \\1 & 13 & - 3 & 0 \\2 & - 7 & 4 & 21\end{array} \right] \frac { 1 } { 5 } \mathrm { R } _ { 1 }

(Multiple Choice)
4.8/5
(28)

Use Inverses to Solve Matrix Equations - 9x+8y=869 x + 8 y = 86 4y=164 y = 16

(Multiple Choice)
4.9/5
(29)

Inconsistent and Dependent Systems and Their Applications 1 Apply Gaussian Elimination to Systems Without Unique Solutions - 4x-y+3z =12 x+4y+6z =-32 5x+3y+9z =20

(Multiple Choice)
4.8/5
(39)

Use Determinants to Identify Inconsistent Systems and Systems with Dependent Equations - 4x-y+2z=1 3x+5y-z=0 -6x-10y+2z=0

(Multiple Choice)
4.8/5
(34)

Encode and Decode Messages -Use the coding matrix A=[3725]A = \left[ \begin{array} { l l } 3 & 7 \\ 2 & 5 \end{array} \right] to encode the message LIFE.

(Multiple Choice)
4.7/5
(29)

Multiplicative Inverses of Matrices and Matrix Equations 1 Find the Multiplicative Inverse of a Square Matrix - A=[100510021]A = \left[ \begin{array} { r r r } 1 & 0 & 0 \\- 5 & 1 & 0 \\0 & 2 & 1\end{array} \right]

(Multiple Choice)
4.7/5
(30)

Determinants and Cramer's Rule 1 Evaluate a Second-Order Determinant - 1122\left| \begin{array} { r r } - 1 & 1 \\ 2 & 2 \end{array} \right|

(Multiple Choice)
4.7/5
(27)

Multiplicative Inverses of Matrices and Matrix Equations 1 Find the Multiplicative Inverse of a Square Matrix - A=[5623]A = \left[ \begin{array} { r r } - 5 & 6 \\ - 2 & - 3 \end{array} \right]

(Multiple Choice)
4.7/5
(33)

Determinants and Cramer's Rule 1 Evaluate a Second-Order Determinant - 6992\left| \begin{array} { l l } 6 & 9 \\ 9 & 2 \end{array} \right|

(Multiple Choice)
4.9/5
(38)

Multiplicative Inverses of Matrices and Matrix Equations 1 Find the Multiplicative Inverse of a Square Matrix - A=[210112101],B=[112324111]A = \left[ \begin{array} { r r r } 2 & - 1 & 0 \\- 1 & 1 & - 2 \\1 & 0 & - 1\end{array} \right] , \quad B = \left[ \begin{array} { r r r } 1 & - 1 & 2 \\- 3 & - 2 & 4 \\- 1 & 1 & 1\end{array} \right]

(Multiple Choice)
4.9/5
(34)

Use Matrices and Gauss-Jordan Elimination to Solve Systems - 3x+5y+2w =-12 2x+6z-w =-5 -2y+3z-3w =-3 -x+2y+4z+w =-2

(Multiple Choice)
4.9/5
(34)
Showing 1 - 20 of 152
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)