Exam 9: Matrices and Determinants

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Add and Subtract Matrices -Let A=[241421123]\mathrm { A } = \left[ \begin{array} { r r r } 2 & 4 & 1 \\ 4 & 2 & - 1 \\ - 1 & 2 & 3 \end{array} \right] and B=[341102032]\mathrm { B } = \left[ \begin{array} { r r r } 3 & - 4 & 1 \\ - 1 & 0 & 2 \\ 0 & 3 & - 2 \end{array} \right] . Find A+B\mathrm { A } + \mathrm { B } .

(Multiple Choice)
4.9/5
(35)

Multiplicative Inverses of Matrices and Matrix Equations 1 Find the Multiplicative Inverse of a Square Matrix - A=[1042]\mathrm { A } = \left[ \begin{array} { r r } - 1 & 0 \\ 4 & 2 \end{array} \right]

(Multiple Choice)
4.9/5
(31)

Multiply Matrices - A=[586836],B=[239]A=\left[\begin{array}{r}-5-8-6 \\8-3-6\end{array}\right], B=\left[\begin{array}{r}-2 \\3 \\9\end{array}\right]

(Multiple Choice)
4.8/5
(35)

Solve a System of Linear Equations in Three Variables Using Cramer's Rule - -2x-2y-z=-13 x+6y+6z=43 6x+y+z=13

(Multiple Choice)
4.9/5
(36)

Inconsistent and Dependent Systems and Their Applications 1 Apply Gaussian Elimination to Systems Without Unique Solutions - 5x+2y+z =-11 2x-3y-z =17 7x-y =12

(Multiple Choice)
4.8/5
(37)

Use Determinants to Identify Inconsistent Systems and Systems with Dependent Equations - x+z=1 2x-2y=-2 y+z=4

(Multiple Choice)
4.7/5
(42)

Write the matrix equation as a system of linear equations without matrices. - [328907490][xyz]=[242]\left[ \begin{array} { l l l } 3 & 2 & 8 \\9 & 0 & 7 \\4 & 9 & 0\end{array} \right] \left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { r } - 2 \\4 \\2\end{array} \right]

(Multiple Choice)
4.9/5
(41)

Solve a System of Linear Equations in Two Variables Using Cramer's Rule - 3x=55-4y 3y=48-3x

(Multiple Choice)
4.8/5
(31)

Write the matrix equation as a system of linear equations without matrices. - [4191020][xy]=[33]\left[ \begin{array} { r r } 4 & 19 \\ 10 & 20 \end{array} \right] \left[ \begin{array} { l } x \\ y \end{array} \right] = \left[ \begin{array} { l } 3 \\ 3 \end{array} \right]

(Multiple Choice)
4.8/5
(26)

Solve the problem using matrices. -The final grade for an algebra course is determined by grades on the midterm and final exam. The grades for four students and two possible grading systems are modeled by the following matrices.  Midterm  Final  Student 1 7379 Student 2 4462 Student 3 8185 Student 4 9896]\left. \begin{array} { l c c } & \text { Midterm } & \text { Final } \\\text { Student 1 } & 73 & 79 \\\text { Student 2 } & 44 & 62 \\\text { Student 3 } & 81 & 85 \\\text { Student 4 } & 98 & 96\end{array} \right]  Solve the problem using matrices. -The final grade for an algebra course is determined by grades on the midterm and final exam. The grades for four students and two possible grading systems are modeled by the following matrices.  \left. \begin{array} { l c c }  & \text { Midterm } & \text { Final } \\ \text { Student 1 } & 73 & 79 \\ \text { Student 2 } & 44 & 62 \\ \text { Student 3 } & 81 & 85 \\ \text { Student 4 } & 98 & 96 \end{array} \right]       Find the final course score for Student 3 for both grading System 1 and System 2.  Find the final course score for Student 3 for both grading System 1 and System 2.

(Multiple Choice)
4.8/5
(31)

Simplify Complex Rational Expressions - 9x+5z=65 3y+6z=27 2x+8y+6z=42

(Multiple Choice)
4.8/5
(33)

Apply Gaussian Elimination to Systems with More Variables than Equations - 2x+y+2z-4w =10 x+3y+2z-11w =17 3x+y+7z-21w =0

(Multiple Choice)
4.8/5
(39)

Model Applied Situations with Matrix Operations -Adjust the contrast by leaving the black alone and changing the light grey to dark grey. Use matrix addition to accomplish this.

(Multiple Choice)
4.9/5
(36)

Use Matrices and Gauss-Jordan Elimination to Solve Systems - x=-1-y-z x-y+4z=-6 3x+y=7-z

(Multiple Choice)
4.9/5
(30)

Inconsistent and Dependent Systems and Their Applications 1 Apply Gaussian Elimination to Systems Without Unique Solutions - x+y+z =9 2x-3y+4z =7 x-4y+3z =-2

(Multiple Choice)
4.7/5
(29)

Solve Matrix Equations -Let A=[7740101]\mathrm { A } = \left[ \begin{array} { r r } 7 & - 7 \\ - 4 & 0 \\ 10 & - 1 \end{array} \right] and B=[1000271];4X+A=B\mathrm { B } = \left[ \begin{array} { r r } 10 & 0 \\ 0 & - 2 \\ 7 & - 1 \end{array} \right] ; \quad 4 X + A = B

(Multiple Choice)
4.8/5
(29)

Evaluate Higher-Order Determinants - 0008469598733317\left| \begin{array} { l l l l } 0 & 0 & 0 & 8 \\4 & 6 & 9 & 5 \\9 & 8 & 7 & 3 \\3 & 3 & 1 & 7\end{array} \right|

(Multiple Choice)
4.8/5
(37)

Understand What is Meant by Equal Matrices - [xy+69z3]=[88903]\left[ \begin{array} { r r } x & y + 6 \\9 z & 3\end{array} \right] = \left[ \begin{array} { c c } 8 & 8 \\90 & 3\end{array} \right]

(Multiple Choice)
4.7/5
(39)

Solve a System of Linear Equations in Two Variables Using Cramer's Rule - 7x+8y=4 2x+3y=2

(Multiple Choice)
4.8/5
(38)

Inconsistent and Dependent Systems and Their Applications 1 Apply Gaussian Elimination to Systems Without Unique Solutions - 3x-2y+2z-w=2 4x+y+z+6w=8 -3x+2y-2z+w=5 5x+3z-2w=1

(Multiple Choice)
4.9/5
(28)
Showing 21 - 40 of 152
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)