Exam 3: Polynomial and Rational Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the inequality. - (x+10)(x2)x10\frac { ( x + 10 ) ( x - 2 ) } { x - 1 } \geq 0

(Multiple Choice)
4.9/5
(45)

Find the indicated intercept(s) of the graph of the function.2133:2139 - 3x3+8x215x4;x+43 x ^ { 3 } + 8 x ^ { 2 } - 15 x - 4 ; x + 4

(Multiple Choice)
4.8/5
(42)

Solve the problem. -The revenue achieved by selling x graphing calculators is figured to be x(50 - 0.5x) dollars. The cost of each calculator is $14. How many graphing calculators must be sold to make a profit (revenue - cost) of at least $630.00? A) {x32<x<40}\{ x \mid 32 < x < 40 \} B) {x30<x<42}\{ x \mid 30 < x < 42 \} C) {x39<x<51}\{ x \mid 39 < x < 51 \} D) {x31<x<41}\{ x \mid 31 < x < 41 \}

(Multiple Choice)
4.8/5
(29)

Solve the inequality. - (x2)2x29>0\frac { ( x - 2 ) ^ { 2 } } { x ^ { 2 } - 9 } > 0

(Multiple Choice)
4.8/5
(41)

Find the indicated intercept(s) of the graph of the function.2133:2139 - f(x)=15x3+49x249x99;x113f ( x ) = 15 x ^ { 3 } + 49 x ^ { 2 } - 49 x - 99 ; x - \frac { 11 } { 3 }

(Multiple Choice)
4.7/5
(38)

Use the graph to determine the domain and range of the function. - Use the graph to determine the domain and range of the function. -  A) domain:  \{ x \mid x \neq 4 \}  range:  \{ y \mid y \neq 2 \}   B) domain:  \{ x \mid x \neq 4 \}  range:  \{ y \mid y \neq - 2 \}   C) domain:  \{ x \mid x \neq 2 \}   range:  \{ y \mid y \neq 4 \}   D) domain:  \{ x \mid x \neq - 2 \}     range:  \{ y \mid y \neq 4 \} A) domain: {xx4}\{ x \mid x \neq 4 \} range: {yy2}\{ y \mid y \neq 2 \} B) domain: {xx4}\{ x \mid x \neq 4 \} range: {yy2}\{ y \mid y \neq - 2 \} C) domain: {xx2}\{ x \mid x \neq 2 \} range: {yy4}\{ y \mid y \neq 4 \} D) domain: {xx2}\{ x \mid x \neq - 2 \} range: {yy4}\{ y \mid y \neq 4 \}

(Multiple Choice)
4.9/5
(36)

Find the vertical asymptotes of the rational function. - f(x)=2x2(x+4)(x1)f ( x ) = \frac { 2 x ^ { 2 } } { ( x + 4 ) ( x - 1 ) }

(Multiple Choice)
4.9/5
(32)

Use the graph to find the horizontal asymptote, if any, of the function. -Use the graph to find the horizontal asymptote, if any, of the function. -

(Multiple Choice)
4.9/5
(37)

Solve the equation in the real number system. - 3x3x2+3x1=03 x ^ { 3 } - x ^ { 2 } + 3 x - 1 = 0

(Multiple Choice)
4.8/5
(32)

Find the domain of the rational function. - h(x)=x+4x2+4xh ( x ) = \frac { x + 4 } { x ^ { 2 } + 4 x }

(Multiple Choice)
4.8/5
(34)

Use the graph to find the vertical asymptotes, if any, of the function. - Use the graph to find the vertical asymptotes, if any, of the function. -  A)  x = - 1 , x = 1 , y = 0  B) none C)  x = - 1 , x = 1  D)  x = - 1 , x = 1 , x = 0 A) x=1,x=1,y=0x = - 1 , x = 1 , y = 0 B) none C) x=1,x=1x = - 1 , x = 1 D) x=1,x=1,x=0x = - 1 , x = 1 , x = 0

(Multiple Choice)
4.8/5
(39)

Find the indicated intercept(s) of the graph of the function.2133:2139 - x-intercepts of f(x)=x212+x4x \text {-intercepts of } f ( x ) = \frac { x ^ { 2 } - 1 } { 2 + x ^ { 4 } }

(Multiple Choice)
4.9/5
(34)

Use Descartes' Rule of Signs and the Rational Zeros Theorem to find all the real zeros of the polynomial function. Use the zeros to factor f over the real numbers. - f(x)=5x48x3+23x232x+12f ( x ) = 5 x ^ { 4 } - 8 x ^ { 3 } + 23 x ^ { 2 } - 32 x + 12

(Multiple Choice)
4.7/5
(38)

Form a polynomial whose zeros and degree are given. Use a leading coefficient of 1. -Zeros: -5, -3, 3; degree 3 A) f(x)=x39x5x2+45f ( x ) = x ^ { 3 } - 9 x - 5 x ^ { 2 } + 45 B) f(x)=x3+9x5x245f ( x ) = x ^ { 3 } + 9 x - 5 x ^ { 2 } - 45 C) f(x)=x3+9x+5x2+45f ( x ) = x ^ { 3 } + 9 x + 5 x ^ { 2 } + 45 D) f(x)=x39x+5x245f ( x ) = x ^ { 3 } - 9 x + 5 x ^ { 2 } - 45

(Multiple Choice)
4.8/5
(39)

Determine the maximum number of turning points of f. - f(x)=9xx3f ( x ) = 9 x - x ^ { 3 }

(Multiple Choice)
4.9/5
(42)

List the potential rational zeros of the polynomial function. Do not find the zeros. - f(x)=x55x2+6x+5f ( x ) = x ^ { 5 } - 5 x ^ { 2 } + 6 x + 5

(Multiple Choice)
4.9/5
(35)

Find the x- and y-intercepts of f. - f(x)=3xx3f ( x ) = 3 x - x ^ { 3 } A) x-intercepts: 0,3;y0 , - 3 ; y -intercept: 0 B) x-intercepts: 0,3,3;y0 , \sqrt { 3 } , - \sqrt { 3 } ; y -intercept: 3 C) xx -intercepts: 0,3,3;y0 , \sqrt { 3 } , - \sqrt { 3 } ; \mathrm { y } -intercept: 0 D) x-intercepts: 0,3;y0 , - 3 ; y -intercept: 3

(Multiple Choice)
4.7/5
(39)

Find all zeros of the function and write the polynomial as a product of linear factors. - f(x)=x3+4x2+8x+8f ( x ) = x ^ { 3 } + 4 x ^ { 2 } + 8 x + 8

(Multiple Choice)
4.8/5
(36)

Solve the problem. - (x2)(x3)>0( x - 2 ) ( x - 3 ) > 0

(Multiple Choice)
4.8/5
(34)

Give the equation of the oblique asymptote, if any, of the function. - f(x)=x2+2x6x4f ( x ) = \frac { x ^ { 2 } + 2 x - 6 } { x - 4 }

(Multiple Choice)
4.9/5
(40)
Showing 221 - 240 of 350
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)