Exam 3: Polynomial and Rational Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the problem. -Determine which rational function R(x)R ( x ) has a graph that crosses the xx -axis at 1- 1 , touches the xx -axis at 4- 4 , has vertical asymptotes at x=2x = - 2 and x=3x = 3 , and has one horizontal asymptote at y=2y = - 2 .

(Multiple Choice)
4.9/5
(36)

Graph the function. - f(x)=x25x+4(x5)2f ( x ) = \frac { x ^ { 2 } - 5 x + 4 } { ( x - 5 ) ^ { 2 } }  Graph the function. - f ( x ) = \frac { x ^ { 2 } - 5 x + 4 } { ( x - 5 ) ^ { 2 } }     A)    B)    C)    D)    A)  Graph the function. - f ( x ) = \frac { x ^ { 2 } - 5 x + 4 } { ( x - 5 ) ^ { 2 } }     A)    B)    C)    D)    B)  Graph the function. - f ( x ) = \frac { x ^ { 2 } - 5 x + 4 } { ( x - 5 ) ^ { 2 } }     A)    B)    C)    D)    C)  Graph the function. - f ( x ) = \frac { x ^ { 2 } - 5 x + 4 } { ( x - 5 ) ^ { 2 } }     A)    B)    C)    D)    D)  Graph the function. - f ( x ) = \frac { x ^ { 2 } - 5 x + 4 } { ( x - 5 ) ^ { 2 } }     A)    B)    C)    D)

(Multiple Choice)
4.9/5
(30)

Solve the problem. -Decide which of the rational functions might have the given graph.  Solve the problem. -Decide which of the rational functions might have the given graph.   A)  f ( x ) = 1 - x  B)  f ( x ) = \frac { 1 } { x } - 1  C)  f ( x ) = 1 - \frac { 1 } { x }  D)  f ( x ) = 1 + \frac { 1 } { x } A) f(x)=1xf ( x ) = 1 - x B) f(x)=1x1f ( x ) = \frac { 1 } { x } - 1 C) f(x)=11xf ( x ) = 1 - \frac { 1 } { x } D) f(x)=1+1xf ( x ) = 1 + \frac { 1 } { x }

(Multiple Choice)
4.8/5
(40)

Use the given zero to find the remaining zeros of the function. - f(x)=x510x4+42x3124x2+297x306f ( x ) = x ^ { 5 } - 10 x ^ { 4 } + 42 x ^ { 3 } - 124 x ^ { 2 } + 297 x - 306 ; zero: 3i3 i

(Multiple Choice)
4.8/5
(42)

Use the graph to find the vertical asymptotes, if any, of the function. -Use the graph to find the vertical asymptotes, if any, of the function. -

(Multiple Choice)
4.7/5
(39)

State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not. - f(x)=x3/2x6+7f ( x ) = x ^ { 3 / 2 } - x ^ { 6 } + 7

(Multiple Choice)
4.8/5
(45)

Analyze the graph of the given function f as follows: (a) Determine the end behavior: find the power function that the graph of f resembles for large values of | x| x | (b) Find the x- and y-intercepts of the graph. (c) Determine whether the graph crosses or touches the x-axis at each x-intercept. (d) Graph f using a graphing utility. (e) Use the graph to determine the local maxima and local minima, if any exist. Round turning points to two decimal places. (f) Use the information obtained in (a) - (e) to draw a complete graph of f by hand. Label all intercepts and turning points. (g) Find the domain of f. Use the graph to find the range of f. (h) Use the graph to determine where f is increasing and where f is decreasing. - f(x)=(x+3)(x2)2f ( x ) = ( x + 3 ) ( x - 2 ) ^ { 2 }

(Essay)
4.8/5
(31)

Solve the problem. - (x1)(x2+x+1)>( x - 1 ) \left( x ^ { 2 } + x + 1 \right) >

(Multiple Choice)
4.7/5
(45)

Use the Factor Theorem to determine whether x - c is a factor of f. If it is, write f in factored form, that is, write f in the form f(x) = (x - c)(quotient). - f(x)=x612x469x2+80;c=4f ( x ) = x ^ { 6 } - 12 x ^ { 4 } - 69 x ^ { 2 } + 80 ; c = 4

(Multiple Choice)
4.8/5
(36)

Solve the equation in the real number system. - 2x3x212x+6=02 x ^ { 3 } - x ^ { 2 } - 12 x + 6 = 0

(Multiple Choice)
4.9/5
(32)

Find the indicated intercept(s) of the graph of the function.2133:2139 - 7x3+17x211x+3;x+37 x ^ { 3 } + 17 x ^ { 2 } - 11 x + 3 ; x + 3

(Multiple Choice)
4.9/5
(33)

List the potential rational zeros of the polynomial function. Do not find the zeros. - f(x)=7x3x2+2f ( x ) = 7 x ^ { 3 } - x ^ { 2 } + 2

(Multiple Choice)
4.8/5
(43)

Find the indicated intercept(s) of the graph of the function.2133:2139 - yy -intercept of f(x)=x53x3f ( x ) = \frac { x - 5 } { 3 x - 3 }

(Multiple Choice)
4.8/5
(32)

Use transformations of the graph o y=x4 or y=x5y = x ^ { 4 } \text { or } y = x ^ { 5 } to graph the function. - f(x)=(x3)5+2f ( x ) = ( x - 3 ) ^ { 5 } + 2  Use transformations of the graph o  y = x ^ { 4 } \text { or } y = x ^ { 5 }  to graph the function. - f ( x ) = ( x - 3 ) ^ { 5 } + 2     A)    B)    C)    D)    A)  Use transformations of the graph o  y = x ^ { 4 } \text { or } y = x ^ { 5 }  to graph the function. - f ( x ) = ( x - 3 ) ^ { 5 } + 2     A)    B)    C)    D)    B)  Use transformations of the graph o  y = x ^ { 4 } \text { or } y = x ^ { 5 }  to graph the function. - f ( x ) = ( x - 3 ) ^ { 5 } + 2     A)    B)    C)    D)    C)  Use transformations of the graph o  y = x ^ { 4 } \text { or } y = x ^ { 5 }  to graph the function. - f ( x ) = ( x - 3 ) ^ { 5 } + 2     A)    B)    C)    D)    D)  Use transformations of the graph o  y = x ^ { 4 } \text { or } y = x ^ { 5 }  to graph the function. - f ( x ) = ( x - 3 ) ^ { 5 } + 2     A)    B)    C)    D)

(Multiple Choice)
4.9/5
(39)

The equation has a solution r in the interval indicated. Approximate this solution correct to two decimal places. - x4x37x2+5x+10=0;3r2x ^ { 4 } - x ^ { 3 } - 7 x ^ { 2 } + 5 x + 10 = 0 ; - 3 \leq r \leq - 2

(Short Answer)
4.7/5
(40)

Graph the function. - f(x)=x41x216f ( x ) = \frac { x ^ { 4 } - 1 } { x ^ { 2 } - 16 }  Graph the function. - f ( x ) = \frac { x ^ { 4 } - 1 } { x ^ { 2 } - 16 }     A)    B)    C)    D)    A)  Graph the function. - f ( x ) = \frac { x ^ { 4 } - 1 } { x ^ { 2 } - 16 }     A)    B)    C)    D)    B)  Graph the function. - f ( x ) = \frac { x ^ { 4 } - 1 } { x ^ { 2 } - 16 }     A)    B)    C)    D)    C)  Graph the function. - f ( x ) = \frac { x ^ { 4 } - 1 } { x ^ { 2 } - 16 }     A)    B)    C)    D)    D)  Graph the function. - f ( x ) = \frac { x ^ { 4 } - 1 } { x ^ { 2 } - 16 }     A)    B)    C)    D)

(Multiple Choice)
4.8/5
(36)

List the potential rational zeros of the polynomial function. Do not find the zeros. - f(x)=x53x2+3x+35f ( x ) = x ^ { 5 } - 3 x ^ { 2 } + 3 x + 35

(Multiple Choice)
4.9/5
(40)

Information is given about a polynomial f(x) whose coefficients are real numbers. Find the remaining zeros of f. -Degree 3; zeros: 4,1i4,1 - \mathrm { i }

(Multiple Choice)
4.9/5
(38)

Solve the problem. -The acceleration due to gravity g (in meters per second per second) at a height h meters above sea level is given by g(h)=3.99×1014(6.374×106+h)2g ( h ) = \frac { 3.99 \times 10 ^ { 14 } } { \left( 6.374 \times 10 ^ { 6 } + h \right) ^ { 2 } } where 6.374×1066.374 \times 10 ^ { 6 } is the radius of Earth in meters. Death Valley in California is 86 m below sea level. a) Find the value of g(h) at Death Valley to four decimal places. b) Compare the value in (a) to the value of g(h) at sea level.

(Essay)
4.8/5
(31)

Find the indicated intercept(s) of the graph of the function.2133:2139 - yy -intercept of f(x)=x3+15x25f ( x ) = \frac { x ^ { 3 } + 15 } { x ^ { 2 } - 5 }

(Multiple Choice)
4.9/5
(35)
Showing 321 - 340 of 350
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)