Exam 3: Polynomial and Rational Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the equation in the real number system. - x421x2100=0x ^ { 4 } - 21 x ^ { 2 } - 100 = 0

(Multiple Choice)
4.7/5
(44)

Find the vertical asymptotes of the rational function. - g(x)=x+9x2+4g ( x ) = \frac { x + 9 } { x ^ { 2 } + 4 }

(Multiple Choice)
4.9/5
(37)

Form a polynomial whose zeros and degree are given. Use a leading coefficient of 1. -Zeros: 3, multiplicity 2; -3, multiplicity 2; degree 4 A) f(x)=x46x3+18x227x+81f ( x ) = x ^ { 4 } - 6 x ^ { 3 } + 18 x ^ { 2 } - 27 x + 81 B) f(x)=x4+6x318x2+27x81f ( x ) = x ^ { 4 } + 6 x ^ { 3 } - 18 x ^ { 2 } + 27 x - 81 C) f(x)=x4+18x2+81f ( x ) = x ^ { 4 } + 18 x ^ { 2 } + 81 D) f(x)=x418x2+81f ( x ) = x ^ { 4 } - 18 x ^ { 2 } + 81

(Multiple Choice)
4.9/5
(36)

Find the indicated intercept(s) of the graph of the function.2133:2139 - yy -intercept of f(x)=(5x15)(x4)x2+12x19f ( x ) = \frac { ( 5 x - 15 ) ( x - 4 ) } { x ^ { 2 } + 12 x - 19 }

(Multiple Choice)
4.9/5
(35)

Find the vertical asymptotes of the rational function. - h(x)=x+4x236h ( x ) = \frac { x + 4 } { x ^ { 2 } - 36 }

(Multiple Choice)
4.8/5
(34)

Find the indicated intercept(s) of the graph of the function.2133:2139 - f(x)=x3+2x26x+8;x4f ( x ) = x ^ { 3 } + 2 x ^ { 2 } - 6 x + 8 ; x - 4

(Multiple Choice)
4.9/5
(38)

Solve the problem. - x264>0\mathrm { x } ^ { 2 } - 64 > 0

(Multiple Choice)
4.8/5
(35)

Use the Factor Theorem to determine whether x - c is a factor of f. If it is, write f in factored form, that is, write f in the form f(x) = (x - c)(quotient). - f(x)=2x3+16x2+39x+45;c=5f ( x ) = 2 x ^ { 3 } + 16 x ^ { 2 } + 39 x + 45 ; c = - 5

(Multiple Choice)
4.8/5
(34)

Solve the inequality. - (x3)(x+3)x0\frac { ( x - 3 ) ( x + 3 ) } { x } \leq 0

(Multiple Choice)
4.8/5
(30)

Give the equation of the oblique asymptote, if any, of the function. - h(x)=3x28x49x24x+6h ( x ) = \frac { 3 x ^ { 2 } - 8 x - 4 } { 9 x ^ { 2 } - 4 x + 6 }

(Multiple Choice)
4.8/5
(44)

Find the x- and y-intercepts of f. - f(x)=(x4)(x1)f ( x ) = ( x - 4 ) ( x - 1 )

(Multiple Choice)
4.9/5
(42)

Give the equation of the oblique asymptote, if any, of the function. - f(x)=x2636xx4f ( x ) = \frac { x ^ { 2 } - 6 } { 36 x - x ^ { 4 } }

(Multiple Choice)
4.8/5
(39)

Analyze the graph of the given function f as follows: (a) Determine the end behavior: find the power function that the graph of f resembles for large values of | x| x | (b) Find the x- and y-intercepts of the graph. (c) Determine whether the graph crosses or touches the x-axis at each x-intercept. (d) Graph f using a graphing utility. (e) Use the graph to determine the local maxima and local minima, if any exist. Round turning points to two decimal places. (f) Use the information obtained in (a) - (e) to draw a complete graph of f by hand. Label all intercepts and turning points. (g) Find the domain of f. Use the graph to find the range of f. (h) Use the graph to determine where f is increasing and where f is decreasing. - f(x)=2(x1)(x+3)3f ( x ) = - 2 ( x - 1 ) ( x + 3 ) ^ { 3 }

(Essay)
4.8/5
(38)

For the polynomial, list each real zero and its multiplicity. Determine whether the graph crosses or touches the x-axis at each x -intercept. - f(x)=15x(x25)f ( x ) = \frac { 1 } { 5 } x \left( x ^ { 2 } - 5 \right)

(Multiple Choice)
4.9/5
(32)

Give the maximum number of zeros the polynomial function may have. Use Descarte's Rule of Signs to determine how many positive and how many negative zeros it may have. - f(x)=x6x5x45x3+2x2+2x+3f ( x ) = x ^ { 6 } - x ^ { 5 } - x ^ { 4 } - 5 x ^ { 3 } + 2 x ^ { 2 } + 2 x + 3

(Multiple Choice)
4.8/5
(30)

Solve the problem. -A can in the shape of a right circular cylinder is required to have a volume of 700 cubic centimeters. The top and bottom are made up of a material that costs 8¢ per square centimeter, while the sides are made of material that Costs 5¢ per square centimeter. Which function below describes the total cost of the material as a function of the Radius r of the cylinder? A) C(r)=0.16πr2+140rC ( r ) = 0.16 \pi r ^ { 2 } + \frac { 140 } { r } B) C(r)=0.08πr2+70rC ( r ) = 0.08 \pi r ^ { 2 } + \frac { 70 } { r } C) C(r)=0.16πr2+70rC ( r ) = 0.16 \pi r ^ { 2 } + \frac { 70 } { r } D) C(r)=0.08πr2+140rC ( r ) = 0.08 \pi r ^ { 2 } + \frac { 140 } { r }

(Multiple Choice)
4.7/5
(42)

Find the vertical asymptotes of the rational function. - f(x)=x416xx3f ( x ) = \frac { x - 4 } { 16 x - x ^ { 3 } }

(Multiple Choice)
4.7/5
(43)

Solve the problem. - 2x2+5x<32 x ^ { 2 } + 5 x < 3

(Multiple Choice)
4.8/5
(31)

Form a polynomial f(x) with real coefficients having the given degree and zeros. -Degree: 3 ; zeros: 3- 3 and 32i3 - 2 \mathrm { i }

(Multiple Choice)
4.7/5
(36)

Find all zeros of the function and write the polynomial as a product of linear factors. - f(x)=x4+5x3+15x2+45x+54f ( x ) = x ^ { 4 } + 5 x ^ { 3 } + 15 x ^ { 2 } + 45 x + 54

(Multiple Choice)
4.9/5
(42)
Showing 121 - 140 of 350
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)