Exam 10: Analytic Geometry in Three Dimensions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

D Determine whether u\mathbf { u } and v\mathbf { v } are parallel, orthogonal, or neither. u=5,6,8,v=10,12,16\mathbf { u } = \langle 5,6 , - 8 \rangle , \mathbf { v } = \langle 10,12 , - 16 \rangle

(Multiple Choice)
4.7/5
(33)

Find the lengths of the sides of the right triangle whose vertices are located at the given points. Show that these lengths satisfy the Pythagorean Theorem. Show all of your work. (8,4,4),(9,5,3),(3,6,0)( 8 , - 4,4 ) , ( 9,5,3 ) , ( - 3,6,0 )

(Essay)
4.8/5
(32)

Find the midpoint of the line segment joining the points. (3,7,8),(8,2,5)( - 3,7 , - 8 ) , ( 8,2,5 )

(Multiple Choice)
4.8/5
(28)

For the points A(4,1,1),B(1,2,4),C(5,4,4),D(0,5,9)A ( 4 , - 1 , - 1 ) , B ( - 1 , - 2,4 ) , C ( 5 , - 4,4 ) , D ( 0 , - 5,9 ) : a. Verify that the points are vertices of a parallelogram. Show all work. b. Find the area of the parallelogram. Show all work. c. Determine whether the parallelogram is a rectangle.

(Essay)
4.9/5
(42)

Find the lengths of the sides of the right triangle whose vertices are located at the given points. Show that these lengths satisfy the Pythagorean Theorem. Show all of your work. (6,3,4),(7,1,3),(6,4,0)( - 6 , - 3,4 ) , ( - 7 , - 1,3 ) , ( 6,4,0 )

(Essay)
4.9/5
(32)

Find the general form of the equation of the plane with the given characteristics. The plane passes through the points (4,4,3)( - 4,4,3 ) and (2,7,7)( 2,7 , - 7 ) and is perpendicular to the plane 2x+3y+3z=12 x + 3 y + 3 z = 1 .

(Multiple Choice)
4.8/5
(30)

Find the torque on the crankshaft V\mathbf { V } using the data shown in the figure. Round to the nearest tenth of a foot-pound.  Find the torque on the crankshaft  \mathbf { V }  using the data shown in the figure. Round to the nearest tenth of a foot-pound.    \begin{array}{l} \|\mathbf{V}\|=1.6 \mathrm{ft} \\ \|\mathbf{F}\|=20 \mathrm{lb} \\ \theta=60^{\circ} \end{array}   \|\|=1.6 \|\|=20 \theta=6

(Multiple Choice)
4.9/5
(28)

Find the triple scalar product u(v×w)\mathbf { u } \cdot ( \mathbf { v } \times \mathbf { w } ) for the vectors u=i+2j+k,v=7i+8j+3k,w=4i+7j3k\mathbf { u } = - \mathbf { i } + 2 \mathbf { j } + \mathbf { k } , \mathbf { v } = 7 \mathbf { i } + 8 \mathbf { j } + 3 \mathbf { k } , \mathbf { w } = 4 \mathbf { i } + 7 \mathbf { j } - 3 \mathbf { k }

(Multiple Choice)
4.9/5
(47)

Find symmetric equations for the line through the point and parallel to the specified vector. Show all your work. (1,8,6)( 1,8,6 ) , parallel to 9,6,5\langle 9 , - 6,5 \rangle

(Essay)
4.8/5
(32)

Find the area of the parallelogram that has the vectors as adjacent sides. u=2,3,5,v=3,3,5\mathbf { u } = \langle 2,3,5 \rangle , \mathbf { v } = \langle - 3,3 , - 5 \rangle

(Multiple Choice)
4.9/5
(28)

Find the area of the parallelogram that has the vectors as adjacent sides. u=3i2j+5k,v=i2j+k\mathbf { u } = - 3 \mathbf { i } - 2 \mathbf { j } + 5 \mathbf { k } , \mathbf { v } = \mathbf { i } - 2 \mathbf { j } + \mathbf { k }

(Multiple Choice)
4.8/5
(27)

Determine whether u\mathbf { u } and v\mathbf { v } are parallel, orthogonal, or neither. u=1,6,3,v=3,18,9\mathbf { u } = \langle - 1,6 , - 3 \rangle , \mathbf { v } = \langle - 3,18 , - 9 \rangle

(Multiple Choice)
4.7/5
(28)

Find the vector z\mathbf { z } , given u=0,8,4,v=5,0,6\mathbf { u } = \langle 0 , - 8 , - 4 \rangle , \mathbf { v } = \langle - 5,0 , - 6 \rangle , and w=17,25,1\mathbf { w } = \langle - 17,25 , - 1 \rangle . 2u+4v3z=w- 2 \mathbf { u } + 4 \mathbf { v } - 3 \mathbf { z } = \mathbf { w }

(Multiple Choice)
4.9/5
(46)

Write the component form of the vector described below. Initial point: (1,5,6)( - 1 , - 5 , - 6 ) Terminal point: (4,2,4)( 4 , - 2 , - 4 )

(Multiple Choice)
5.0/5
(24)

Find the dot product of u\mathbf { u } and v\mathbf { v } . u=9i5j9k,v=2i+6j+5k\mathbf { u } = 9 \mathbf { i } - 5 \mathbf { j } - 9 \mathbf { k } , \mathbf { v } = - 2 \mathbf { i } + 6 \mathbf { j } + 5 \mathbf { k }

(Multiple Choice)
4.9/5
(34)

Find the area of the parallelogram that has the vectors as adjacent sides. u=4,4,1,v=1,4,4\mathbf { u } = \langle - 4 , - 4 , - 1 \rangle , \mathbf { v } = \langle - 1,4 , - 4 \rangle

(Multiple Choice)
4.9/5
(35)

Find the lengths of the sides of the right triangle whose vertices are located at the given points. Show that these lengths satisfy the Pythagorean Theorem. Show all of your work. (9,6,1),(8,3,2),(3,6,0)( - 9,6 , - 1 ) , ( - 8,3 , - 2 ) , ( 3,6,0 )

(Essay)
4.8/5
(35)

Find the angle between the vectors u\mathbf { u } and v\mathbf { v } . Express your answer in degrees and round to the nearest tenth of a degree. u=5i6jk,v=6i+j+k\mathbf { u } = - 5 \mathbf { i } - 6 \mathbf { j } - \mathbf { k } , \mathbf { v } = 6 \mathbf { i } + \mathbf { j } + \mathbf { k }

(Multiple Choice)
4.8/5
(43)

Find the angle of intersection of the planes in degrees. Round to a tenth of a degree. 3x-2y+4z=3 5x-3y+3z=-6

(Multiple Choice)
5.0/5
(38)

Find the general form of the equation of the plane passing through the three points. [Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.] (2,1,4),(3,1,2),(6,5,6)( - 2 , - 1,4 ) , ( 3 , - 1,2 ) , ( - 6 , - 5 , - 6 )

(Multiple Choice)
4.9/5
(35)
Showing 41 - 60 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)