Exam 10: Analytic Geometry in Three Dimensions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the magnitude of the vector v\mathbf { v } . v=7,1,8\mathbf { v } = \langle - 7,1 , - 8 \rangle

(Multiple Choice)
4.9/5
(31)

Find the angle between the two planes in degrees. Round to a tenth of a degree. 2x-y-4z=4 -3x-2y+4z=4

(Multiple Choice)
4.8/5
(27)

Find the vector z\mathbf { z } , given u=3,3,8,v=7,5,2\mathbf { u } = \langle 3 , - 3,8 \rangle , \mathbf { v } = \langle - 7 , - 5,2 \rangle , and w=8,24,18\mathbf { w } = \langle 8 , - 24,18 \rangle . u+3v4z=w- \mathbf { u } + 3 \mathbf { v } - 4 \mathbf { z } = \mathbf { w }

(Multiple Choice)
4.8/5
(30)

Find the general form of the equation of the plane with the given characteristics. The plane passes through the points (4,5,2)( 4,5 , - 2 ) and (1,4,1)( - 1 , - 4 , - 1 ) and is perpendicular to the plane 2x+5y+3z=32 x + 5 y + 3 z = - 3 .

(Multiple Choice)
4.8/5
(40)

Find the center and radius of the sphere. x2+y2+z216x+6y+6z+18=0x ^ { 2 } + y ^ { 2 } + z ^ { 2 } - 16 x + 6 y + 6 z + 18 = 0

(Multiple Choice)
4.7/5
(35)

Find a set of parametric equations for the line through the point and parallel to the specified line. Show all your work. x=25tx = 2 - 5 t (3,3,9)( 3 , - 3,9 ) , parallel to y=93ty = - 9 - 3 t z=82tz = 8 - 2 t

(Essay)
4.9/5
(32)

Use the scalar triple product to find the volume of the parallelepiped having adjacent edges 1,2,2,2,3,1\langle 1,2,2 \rangle , \langle 2,3,1 \rangle , and 1,3,4\langle 1,3,4 \rangle .

(Multiple Choice)
4.8/5
(36)

Find the angle between the two planes in degrees. Round to a tenth of a degree. x+3y+6z=4 x-6y-z=4

(Multiple Choice)
4.9/5
(41)

Find the magnitude of the vector described below. Initial point: (0,6,4)( 0 , - 6 , - 4 ) Terminal point: (1,5,5)( - 1,5,5 )

(Multiple Choice)
4.9/5
(34)

Find the magnitude of the vector v\mathbf { v } . v=4,0,8\mathbf { v } = \langle - 4,0 , - 8 \rangle

(Multiple Choice)
4.9/5
(43)

Find the angle between the vectors u\mathbf { u } and v\mathbf { v } . Express your answer in degrees and round to the nearest tenth of a degree. u=3,6,3,v=9,9,9\mathbf { u } = \langle - 3,6,3 \rangle , \mathbf { v } = \langle 9,9,9 \rangle

(Multiple Choice)
4.8/5
(30)

Write the component form of the vector described below. Initial point: (7,2,1)( - 7,2 , - 1 ) Terminal point: (5,9,6)( - 5 , - 9 , - 6 )

(Multiple Choice)
4.9/5
(32)

Find the distance between the points. (2,3,3),(6,2,7)( 2 , - 3,3 ) , ( - 6,2,7 )

(Multiple Choice)
4.7/5
(33)

Determine whether the planes are parallel, orthogonal, or neither. 2x-3y-6z=-4 8x-12y-24z=-14

(Multiple Choice)
4.9/5
(27)

Find a set of parametric equations for the line that passes through the given points. Show all your work. (4,2,8),(5,2,7)( - 4,2,8 ) , ( 5 , - 2 , - 7 )

(Essay)
4.8/5
(34)

Determine whether the planes are parallel, orthogonal, or neither. 6x-y-z=4 24x-4y-4z=18

(Multiple Choice)
4.7/5
(21)

Find u×v\mathbf { u } \times \mathbf { v } . u=3,7,1,v=9,4,4\mathbf { u } = \langle 3 , - 7 , - 1 \rangle , \mathbf { v } = \langle - 9,4 , - 4 \rangle

(Multiple Choice)
4.7/5
(26)

Determine the values of cc such that cu=6\| c \mathbf { u } \| = 6 , where u=6i+5j+5k\mathbf { u } = 6 \mathbf { i } + 5 \mathbf { j } + 5 \mathbf { k } .

(Multiple Choice)
4.8/5
(34)

Find symmetric equations for the line through the point and parallel to the specified line. Show all your work. x=8+7tx = - 8 + 7 t (5,3,3)( - 5 , - 3,3 ) , parallel to y=7+3t z=-9-5t

(Essay)
4.7/5
(22)

Find the magnitude of the vector v\mathbf { v } . v=3,3,5\mathbf { v } = \langle - 3 , - 3 , - 5 \rangle

(Multiple Choice)
5.0/5
(36)
Showing 61 - 80 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)