Exam 12: A: Boolean Algebra

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the sum-of-products expansion of the Boolean function f(x, y, z) that is 1 if and only if exactly two of the three variables have value 1.

Free
(Short Answer)
4.9/5
(33)
Correct Answer:
Verified

xˉyz+xyˉz+xyzˉ\bar { x } y z + x \bar { y } z + x y \bar { z }

Show that the Boolean function F given by F(x,y,z)=x(z+yz)+y(xzx) simplifies to xz+xˉy, by using F \text { given by } F ( x , y , z ) = x ( z + y z ) + y ( \overline { x z } x ) \text { simplifies to } x z + \bar { x } y \text {, by using } only the definition of a Boolean algebra.

Free
(Essay)
4.8/5
(22)
Correct Answer:
Verified

x(z+yz)+yxzx=xz+xyz+y(xz+xˉ)=xz+xyz+xyz+xˉy=xz+xyz+xˉy=xz+xˉyx ( z + y z ) + y \cdot \overline{\overline { x z } \cdot x} = x z + x y z + y ( \overline{\overline { x z }} + \bar { x } ) = x z + x y z + x y z + \bar { x } y = x z + x y z + \bar { x } y = x z + \bar { x } y

mark each statement TRUE or FALSE. -The circuit diagrams for x+xˉy and y+xyˉ produce the same output. x + \bar { x } y \text { and } y + x \bar { y } \text { produce the same output. }

Free
(True/False)
4.9/5
(30)
Correct Answer:
Verified

True

mark each statement TRUE or FALSE. -  There are n2 minterms in the variables x1,x2,,xn\text { There are } n ^ { 2 } \text { minterms in the variables } x _ { 1 } , x _ { 2 } , \ldots , x _ { n } \text {. }

(True/False)
4.7/5
(41)

mark each statement TRUE or FALSE. - xy=xˉyˉ\overline { x \downarrow y } = \bar { x } \mid \bar { y }

(True/False)
4.9/5
(31)

mark each statement TRUE or FALSE. -The circuit diagrams for xˉyˉ+xy and x+y produce the same output \overline { \bar { x } \bar { y } + \overline { x y } } \text { and } x + y \text { produce the same output }

(True/False)
4.9/5
(42)

Write x + y as a sum-of-products in the variables x and y.

(Short Answer)
4.8/5
(37)

fill in the blanks. -There are ____ Boolean functions with 4 variables.

(Short Answer)
4.9/5
(29)

fill in the blanks. -Using  " for "nor," (xx)(yy)\downarrow \text { " for "nor," } ( x \downarrow x ) \downarrow ( y \downarrow y ) can be written in terms of , +, and · as ____.

(Short Answer)
5.0/5
(36)

Find a Boolean function F:{0,1}2{0,1} such that F(0,0)=F(0,1)=F(1,1)=1 and F(1,0)=0F : \{ 0,1 \} ^ { 2 } \rightarrow \{ 0,1 \} \text { such that } F ( 0,0 ) = F ( 0,1 ) = F ( 1,1 ) = 1 \text { and } F ( 1,0 ) = 0

(Short Answer)
4.7/5
(40)

mark each statement TRUE or FALSE. -When written as a sum of minterms in the variables x and y,x+yˉ=xy+xyˉ+xˉyˉy , x + \bar { y } = x y + x \bar { y } + \bar { x } \bar { y }

(True/False)
4.9/5
(38)

Construct a circuit using inverters, OR gates, and AND gates that gives an output of 1 if and only if three people on a committee do not all vote the same.

(Essay)
4.8/5
(31)

If f(w,x,y,z)f ( w , x , y , z ) = (xˉ+yzˉ)( \bar { x } + y \bar { z } ) + (wˉx)( \bar { w } x ) , find ff (1,0,1,1)

(Short Answer)
5.0/5
(32)

Give a reason for each step in the proof that x + x = x is true in Boolean algebras. Your reasons should come from the following: associative laws for addition and multiplication, commutative laws for addition and multiplication, distributive law for multiplication over addition and distributive law for addition over multiplication, identity laws, unit property, and zero property. x=x+0=x+(xxˉ)=(x+x)(x+xˉ)=(x+x)1=1(x+x)=x+xx = x + 0 = x + ( x \bar { x } ) = ( x + x ) ( x + \bar { x } ) = ( x + x ) \cdot 1 = 1 \cdot ( x + x ) = x + x

(Essay)
4.8/5
(32)

Prove that the set of real numbers, with addition and multiplication of real numbers as + and · , negation as complementation, and the real numbers 0 and 1 as the 0 and the 1 respectively, is not a Boolean algebra.

(Essay)
4.8/5
(33)

Write x(y+1)x ( y + 1 ) as a sum-of-products in the variables x and y.

(Short Answer)
4.9/5
(29)

mark each statement TRUE or FALSE. -  If f(z,y,z)=xyz, then f(z,y,z)=xˉyˉzˉ\text { If } f ( z , y , z ) = x y z \text {, then } \overline { f ( z , y , z ) } = \bar { x } \bar { y } \bar { z } \text {. }

(True/False)
4.9/5
(42)

Write x + z as a sum-of-products in the variables x, y, and z.

(Short Answer)
4.8/5
(34)

 Let F(x,y,z)=yˉ(xˉz)+yx+yzˉ\text { Let } F ( x , y , z ) = \bar { y } ( \bar { x } z ) + y x + y \bar { z } Draw a logic gate diagram for F .

(Essay)
4.8/5
(27)

Prove that F=G , where F(x,y)\vec { F } ( x , y ) = (x+xˉy)yˉ( x + \bar { x } y ) \bar { y } and G(x,y)=x+yG ( x , y ) = \overline { x + y }

(Essay)
4.8/5
(44)
Showing 1 - 20 of 67
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)