Exam 5: A: Induction and Recursion

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Prove that 12+24+38++n2n=2n+12n2n\frac { 1 } { 2 } + \frac { 2 } { 4 } + \frac { 3 } { 8 } + \cdots + \frac { n } { 2 ^ { n } } = \frac { 2 ^ { n + 1 } - 2 - n } { 2 ^ { n } } for all n1n \geq 1 .

Free
(Essay)
4.7/5
(31)
Correct Answer:
Verified

P(1): 12=(2221)21\frac { 1 } { 2 } = \frac { \left( 2 ^ { 2 } - 2 - 1 \right) } { 2 ^ { 1 } } which is true since the right side is equal to 1/2 . P(k)P(k+1):12+24+38+P ( k ) \rightarrow P ( k + 1 ) : \frac { 1 } { 2 } + \frac { 2 } { 4 } + \frac { 3 } { 8 } + \cdots +
k+12k+1=2k+12k2k+k+12k+1=2k+242k+k+12k+1=2k+23k2k+1=2k+22(k+1)2k+1\frac { k + 1 } { 2 k + 1 } = \frac { 2 ^ { k + 1 } - 2 - k } { 2 ^ { k } } + \frac { k + 1 } { 2 ^ { k + 1 } } = \frac { 2 ^ { k + 2 } - 4 - 2 k + k + 1 } { 2 k + 1 } = \frac { 2 ^ { k + 2 } - 3 - k } { 2 ^ { k + 1 } } = \frac { 2 ^ { k + 2 } - 2 - ( k + 1 ) } { 2 ^ { k + 1 } }

Suppose you wish to use mathematical induction to prove that: 11!+22!+33!++nn!=(n+1)!1 for all n11 \cdot 1 ! + 2 \cdot 2 ! + 3 \cdot 3 ! + \cdots + n \cdot n ! = ( n + 1 ) ! - 1 \quad \text { for all } n \geq 1 (a) Write P(1). (b) Write P(5). (c) Write P(k). (d) Write P(k + 1). (e) Use mathematical induction to prove that P(n) is true for all n ≥ 1.

Free
(Essay)
4.9/5
(40)
Correct Answer:
Verified

(a) 11!=2!11 \cdot 1 ! = 2 ! - 1
(b) 11!+22!++55!=6!11 \cdot 1 ! + 2 \cdot 2 ! + \cdots + 5 \cdot 5 ! = 6 ! - 1
(c) 11!+22!++kk!=(k+1)!11 \cdot 1 ! + 2 \cdot 2 ! + \cdots + k \cdot k ! = ( k + 1 ) ! - 1
(d) 11!+22!++(k+1)(k+1)!=(k+2)!11 \cdot 1 ! + 2 \cdot 2 ! + \cdots + ( k + 1 ) ( k + 1 ) ! = ( k + 2 ) ! - 1
(e) P(1)P ( 1 ) is true since 11!=11 \cdot 1 ! = 1 and 2!1=1.P(k)P(k+1):11!+22!++(k+1)(k+1)!=2 ! - 1 = 1 . \quad P ( k ) \rightarrow P ( k + 1 ) : 1 \cdot 1 ! + 2 \cdot 2 ! + \cdots + ( k + 1 ) ( k + 1 ) ! = (k+1)!1+(k+1)(k+1)!=(k+1)![1+(k+1)]1=(k+1)!(k+2)1=(k+2)!1.( k + 1 ) ! - 1 + ( k + 1 ) ( k + 1 ) ! = ( k + 1 ) ! [ 1 + ( k + 1 ) ] - 1 = ( k + 1 ) ! ( k + 2 ) - 1 = ( k + 2 ) ! - 1 .

Use mathematical induction to prove that any integer amount of postage from 18 cents on up can be made from an infinite supply of 4-cent and 7-cent stamps.

Free
(Essay)
4.8/5
(32)
Correct Answer:
Verified

P(18):P ( 18 ) : use one 4 -cent stamp and two 7-cent stamps. P(k)P(k+1)\quad P ( k ) \rightarrow P ( k + 1 ) : if a pile of stamps for kk cents postage has a 7-cent stamp, replace one 7 -cent stamp with two 4-cent stamps; if the pile contains only 4-cent stamps (there must be at least five of them), replace five 4-cent stamps with three 7-cent stamps.

Suppose {an} is defined recursively by an = an121a^{2}_{n−1} − 1 and that a0 = 2. Find a3 and a4.

(Essay)
4.9/5
(32)

Use mathematical induction to prove that 12+2223++(1)n2n=2n+1(1)n+13 for all positive 1 - 2 + 2 ^ { 2 } - 2 ^ { 3 } + \cdots + ( - 1 ) ^ { n } 2 ^ { n } = \frac { 2 ^ { n + 1 } ( - 1 ) ^ { n } + 1 } { 3 } \text { for all positive } integers n.

(Essay)
4.7/5
(35)

give a recursive definition with initial condition(s). -The function f(n)=n!,n=0,1,2,f ( n ) = n ! , n = 0,1,2 , \ldots

(Short Answer)
4.9/5
(30)

Find the error in the following proof of this "theorem": "Theorem: Every positive integer equals the next largest positive integer." "Proof: Let P(n) be the proposition ' n=n+1 .' To show that P(k)P(k+1)P ( k ) \rightarrow P ( k + 1 ) true for some k , so that k=k+1 . Add 1 to both sides of this equation to obtain k+1=k+2 , which is P(k+1) . Therefore P(k)P(k+1)P ( k ) \rightarrow P ( k + 1 ) is true. Hence P(n) is true for all positive integers n ."

(Short Answer)
4.9/5
(33)

Use mathematical induction to prove that 4(9n5n)4 \mid \left( 9 ^ { n } - 5 ^ { n } \right) for all n0n \geq 0

(Essay)
4.9/5
(30)

give a recursive definition with initial condition(s). -The function f(n)=5n+2,n=1,2,3,f ( n ) = 5 n + 2 , n = 1,2,3 , \ldots

(Short Answer)
4.8/5
(37)

give a recursive definition with initial condition(s). -The function f(n)=2n,n=1,2,3,f ( n ) = 2 ^ { n } , n = 1,2,3 , \ldots

(Short Answer)
4.8/5
(39)

Use mathematical induction to prove that 1+4+7+10++(3n2)=n(3n1)2 for all n11 + 4 + 7 + 10 + \cdots + ( 3 n - 2 ) = \frac { n ( 3 n - 1 ) } { 2 } \text { for all } n \geq 1

(Essay)
5.0/5
(41)

give a recursive definition (with initial condition(s)) of {an}(n=1,2,3,)\left\{ a _ { n } \right\} \quad ( n = 1,2,3 , \ldots ) - an=21/2na _ { n } = 2 ^ { 1 / 2 ^ { n } }

(Short Answer)
4.8/5
(44)

Use mathematical induction to prove that 5(7n2n)5 \mid \left( 7 ^ { n } - 2 ^ { n } \right) for all n0n \geq 0

(Essay)
5.0/5
(40)

give a recursive definition (with initial condition(s)) of {an}(n=1,2,3,)\left\{ a _ { n } \right\} \quad ( n = 1,2,3 , \ldots ) - an=3n5a _ { n } = 3 n - 5

(Short Answer)
4.8/5
(30)

Use mathematical induction to prove that 2(n2+3n) for all n12 \mid \left( n ^ { 2 } + 3 n \right) \text { for all } n \geq 1 \text {. }

(Essay)
4.9/5
(41)

Find f(2) and f(3) if f(n) = f(n − 1) · f(n − 2) + 1, f(0) = 1, f(1) = 4.

(Short Answer)
4.9/5
(42)

give a recursive definition with initial condition(s) of the set S . -{. . . , −5, −3, −1, 1, 3, 5, . . .}

(Short Answer)
4.7/5
(43)

Prove that the distributive law A1(A2An)=(A1A2)(A1An)A _ { 1 } \cap \left( A _ { 2 } \cup \cdots \cup A _ { n } \right) = \left( A _ { 1 } \cap A _ { 2 } \right) \cup \cdots \cup \left( A _ { 1 } \cap A _ { n } \right) is true for all n3n \geq 3

(Essay)
4.9/5
(33)

Verify that the program segment a:=2 b:=a+c is correct with respect to the initial assertion c = 3 and the final assertion b = 5.

(Essay)
4.8/5
(28)

Use mathematical induction to show that n lines in the plane passing through the same point divide the plane into 2n regions.

(Essay)
4.9/5
(25)
Showing 1 - 20 of 51
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)