Exam 9: Regression Analysis

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Which of the following helps in evaluation of autocorrelation?

Free
(Multiple Choice)
4.8/5
(36)
Correct Answer:
Verified

B

Use the data given below to answer the following question(s). Following is an extract from a firm's database detailing the number of hours spent on the job by employees and their corresponding pay.(Note: Assume a level of significance of 0.05 wherever necessary.)  Hours spent  on the job  Salary ($) 43401285075705470118208610963013900108006480\begin{array} { | r | r | } \hline \begin{array} { l } \text { Hours spent } \\\text { on the job }\end{array} & \text { Salary (\$) } \\\hline 4 & 340 \\\hline 12 & 850 \\\hline 7 & 570 \\\hline 5 & 470 \\\hline 11 & 820 \\\hline 8 & 610 \\\hline 9 & 630 \\\hline 13 & 900 \\\hline 10 & 800 \\\hline 6 & 480 \\\hline\end{array} -The standard error may be assumed to be large if the data are clustered close to the regression line.

Free
(True/False)
4.9/5
(36)
Correct Answer:
Verified

False

Use the data given below to answer the following question(s). Following is an extract from a firm's database detailing the number of hours spent on the job by employees and their corresponding pay.(Note: Assume a level of significance of 0.05 wherever necessary.)  Hours spent  on the job  Salary ($) 43401285075705470118208610963013900108006480\begin{array} { | r | r | } \hline \begin{array} { l } \text { Hours spent } \\\text { on the job }\end{array} & \text { Salary (\$) } \\\hline 4 & 340 \\\hline 12 & 850 \\\hline 7 & 570 \\\hline 5 & 470 \\\hline 11 & 820 \\\hline 8 & 610 \\\hline 9 & 630 \\\hline 13 & 900 \\\hline 10 & 800 \\\hline 6 & 480 \\\hline\end{array} -Is the hours spent on the job a statistically significant variable in explaining the variation in pay of employees? (Hint: Use Regression tool).

Free
(Essay)
4.9/5
(30)
Correct Answer:
Verified

Hypothesis test for significance of regression:
H₀ : β1 = 0
H₁ : β1 ≠ 0
where, β1 is the slope of the intercept.
Significance F, that is, the p-value associated with the hypothesis test is essentially zero (2.525 × 10⁻⁷).Therefore, assuming a level of significance of 0.05, the null hypothesis must be rejected and conclude that the slope-the coefficient for number of hours spent on the job-is not zero.This means that work hours is a statistically significant variable in explaining the variation in employee pay.

In multiple regression, R Square is referred to as the:

(Multiple Choice)
4.9/5
(35)

Use the data given below to answer the following question(s). Following is an extract from the database of a construction company.The table shows the height of walls in feet and the cost of raising them.The estimated simple linear regression equation is given as Ŷ = b0 + b1X.(Hint: Use Excel functions).  Height  (ft)  Cost ($) 46703430781091100679088805760111200\begin{array} { | r | r | } \hline \begin{array} { l } \text { Height } \\\text { (ft) }\end{array} & \text { Cost (\$) } \\\hline 4 & 670 \\\hline 3 & 430 \\\hline 7 & 810 \\\hline 9 & 1100 \\\hline 6 & 790 \\\hline 8 & 880 \\\hline 5 & 760 \\\hline 11 & 1200 \\\hline\end{array} -Which of the following generates a scatter chart in Excel with the values predicted by the regression model included?

(Multiple Choice)
4.7/5
(24)

________ means that the variation about the regression line is constant for all values of the independent variable.

(Multiple Choice)
4.9/5
(26)

When a scatter chart of data shows a nonlinear relationship, the nonlinear model can be expressed as:

(Multiple Choice)
4.9/5
(32)

Regression models of ________ data focus on predicting the future.

(Multiple Choice)
4.8/5
(34)

Use the data given below to answer the following question(s). Following is an extract from the database of a construction company.The table shows the height of walls in feet and the cost of raising them.The estimated simple linear regression equation is given as Ŷ = b0 + b1X.(Hint: Use Excel functions).  Height  (ft)  Cost ($) 46703430781091100679088805760111200\begin{array} { | r | r | } \hline \begin{array} { l } \text { Height } \\\text { (ft) }\end{array} & \text { Cost (\$) } \\\hline 4 & 670 \\\hline 3 & 430 \\\hline 7 & 810 \\\hline 9 & 1100 \\\hline 6 & 790 \\\hline 8 & 880 \\\hline 5 & 760 \\\hline 11 & 1200 \\\hline\end{array} -While testing hypotheses for regression coefficients, the t-test for the slope is expressed as:

(Multiple Choice)
4.8/5
(34)

Use the data given below to answer the following question(s). Following is an extract from a firm's database detailing the number of hours spent on the job by employees and their corresponding pay.(Note: Assume a level of significance of 0.05 wherever necessary.)  Hours spent  on the job  Salary ($) 43401285075705470118208610963013900108006480\begin{array} { | r | r | } \hline \begin{array} { l } \text { Hours spent } \\\text { on the job }\end{array} & \text { Salary (\$) } \\\hline 4 & 340 \\\hline 12 & 850 \\\hline 7 & 570 \\\hline 5 & 470 \\\hline 11 & 820 \\\hline 8 & 610 \\\hline 9 & 630 \\\hline 13 & 900 \\\hline 10 & 800 \\\hline 6 & 480 \\\hline\end{array} -Interpret residual output.

(Essay)
4.8/5
(33)

Use the data given below to answer the following question(s). Following is an extract from a firm's database detailing the number of hours spent on the job by employees and their corresponding pay.(Note: Assume a level of significance of 0.05 wherever necessary.)  Hours spent  on the job  Salary ($) 43401285075705470118208610963013900108006480\begin{array} { | r | r | } \hline \begin{array} { l } \text { Hours spent } \\\text { on the job }\end{array} & \text { Salary (\$) } \\\hline 4 & 340 \\\hline 12 & 850 \\\hline 7 & 570 \\\hline 5 & 470 \\\hline 11 & 820 \\\hline 8 & 610 \\\hline 9 & 630 \\\hline 13 & 900 \\\hline 10 & 800 \\\hline 6 & 480 \\\hline\end{array} -Briefly explain the assumptions on which the statistical hypothesis tests associated with regression analysis are predicated.

(Essay)
4.8/5
(45)

Use the data given below to answer the following question(s). Following is an extract from the database of a construction company.The table shows the height of walls in feet and the cost of raising them.The estimated simple linear regression equation is given as Ŷ = b0 + b1X.(Hint: Use Excel functions).  Height  (ft)  Cost ($) 46703430781091100679088805760111200\begin{array} { | r | r | } \hline \begin{array} { l } \text { Height } \\\text { (ft) }\end{array} & \text { Cost (\$) } \\\hline 4 & 670 \\\hline 3 & 430 \\\hline 7 & 810 \\\hline 9 & 1100 \\\hline 6 & 790 \\\hline 8 & 880 \\\hline 5 & 760 \\\hline 11 & 1200 \\\hline\end{array} -Which of the following is true about Excel outputs Multiple R?

(Multiple Choice)
4.8/5
(30)

The following table exhibits the age of antique furniture and the corresponding prices.Use the table to answer the following question(s).(Hint: Use scatter diagram and the Excel Trendline tool where necessary). Number of years Value (\ ) 78 930 91 1010 83 970 159 1950 134 1610 210 2880 88 980 178 2010 124 1370 72 900 -What is the expected value for a 90 year-old piece of furniture?

(Multiple Choice)
4.8/5
(33)

Categorical variables that have been coded are called ________.

(Multiple Choice)
4.9/5
(29)

Use the data given below to answer the following question(s). Following is an extract from a firm's database detailing the number of hours spent on the job by employees and their corresponding pay.(Note: Assume a level of significance of 0.05 wherever necessary.)  Hours spent  on the job  Salary ($) 43401285075705470118208610963013900108006480\begin{array} { | r | r | } \hline \begin{array} { l } \text { Hours spent } \\\text { on the job }\end{array} & \text { Salary (\$) } \\\hline 4 & 340 \\\hline 12 & 850 \\\hline 7 & 570 \\\hline 5 & 470 \\\hline 11 & 820 \\\hline 8 & 610 \\\hline 9 & 630 \\\hline 13 & 900 \\\hline 10 & 800 \\\hline 6 & 480 \\\hline\end{array} -Construct a scatter diagram and use the Excel Trendline tool to find the best-fitting simple linear regression model.

(Essay)
4.9/5
(33)

Use the data given below to answer the following question(s). Following is an extract from the database of a construction company.The table shows the height of walls in feet and the cost of raising them.The estimated simple linear regression equation is given as Ŷ = b0 + b1X.(Hint: Use Excel functions).  Height  (ft)  Cost ($) 46703430781091100679088805760111200\begin{array} { | r | r | } \hline \begin{array} { l } \text { Height } \\\text { (ft) }\end{array} & \text { Cost (\$) } \\\hline 4 & 670 \\\hline 3 & 430 \\\hline 7 & 810 \\\hline 9 & 1100 \\\hline 6 & 790 \\\hline 8 & 880 \\\hline 5 & 760 \\\hline 11 & 1200 \\\hline\end{array} -Which of the following Excel functions is applied to test for significance of regression?

(Multiple Choice)
4.9/5
(44)

________ provide information about the unknown values of the true regression coefficients, accounting for sampling error.

(Multiple Choice)
4.8/5
(42)

The following table exhibits the age of antique furniture and the corresponding prices.Use the table to answer the following question(s).(Hint: Use scatter diagram and the Excel Trendline tool where necessary). Number of years Value (\ ) 78 930 91 1010 83 970 159 1950 134 1610 210 2880 88 980 178 2010 124 1370 72 900 -For an independent variable Y, the error associated with the iᵗʰ observation is:

(Multiple Choice)
4.8/5
(42)

Use the data given below to answer the following question(s). Following is an extract from a firm's database detailing the number of hours spent on the job by employees and their corresponding pay.(Note: Assume a level of significance of 0.05 wherever necessary.)  Hours spent  on the job  Salary ($) 43401285075705470118208610963013900108006480\begin{array} { | r | r | } \hline \begin{array} { l } \text { Hours spent } \\\text { on the job }\end{array} & \text { Salary (\$) } \\\hline 4 & 340 \\\hline 12 & 850 \\\hline 7 & 570 \\\hline 5 & 470 \\\hline 11 & 820 \\\hline 8 & 610 \\\hline 9 & 630 \\\hline 13 & 900 \\\hline 10 & 800 \\\hline 6 & 480 \\\hline\end{array} -While conducting regression analysis, how is constructing a normal probability plot useful?

(Essay)
4.8/5
(38)

Use the data given below to answer the following question(s). Following is an extract from a firm's database detailing the number of hours spent on the job by employees and their corresponding pay.(Note: Assume a level of significance of 0.05 wherever necessary.)  Hours spent  on the job  Salary ($) 43401285075705470118208610963013900108006480\begin{array} { | r | r | } \hline \begin{array} { l } \text { Hours spent } \\\text { on the job }\end{array} & \text { Salary (\$) } \\\hline 4 & 340 \\\hline 12 & 850 \\\hline 7 & 570 \\\hline 5 & 470 \\\hline 11 & 820 \\\hline 8 & 610 \\\hline 9 & 630 \\\hline 13 & 900 \\\hline 10 & 800 \\\hline 6 & 480 \\\hline\end{array} -Creating a scatter chart with an added trendline is visually superior to the scatter chart generated by line fit plots.

(True/False)
4.8/5
(36)
Showing 1 - 20 of 50
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)