Exam 9: Regression Analysis

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

While checking for linearity by examining the residual plot, the residuals must:

(Multiple Choice)
4.8/5
(36)

Interaction is:

(Multiple Choice)
4.9/5
(42)

Use the data given below to answer the following question(s). Following is an extract from a firm's database detailing the number of hours spent on the job by employees and their corresponding pay.(Note: Assume a level of significance of 0.05 wherever necessary.)  Hours spent  on the job  Salary ($) 43401285075705470118208610963013900108006480\begin{array} { | r | r | } \hline \begin{array} { l } \text { Hours spent } \\\text { on the job }\end{array} & \text { Salary (\$) } \\\hline 4 & 340 \\\hline 12 & 850 \\\hline 7 & 570 \\\hline 5 & 470 \\\hline 11 & 820 \\\hline 8 & 610 \\\hline 9 & 630 \\\hline 13 & 900 \\\hline 10 & 800 \\\hline 6 & 480 \\\hline\end{array} -Why is regression analysis necessary in business? What categories of regression models are used?

(Essay)
4.7/5
(31)

When two or more independent variables in the same regression model can predict each other better than the dependent variable, the condition is referred to as ________.

(Multiple Choice)
4.8/5
(33)

Use the data given below to answer the following question(s). Following is an extract from a firm's database detailing the number of hours spent on the job by employees and their corresponding pay.(Note: Assume a level of significance of 0.05 wherever necessary.)  Hours spent  on the job  Salary ($) 43401285075705470118208610963013900108006480\begin{array} { | r | r | } \hline \begin{array} { l } \text { Hours spent } \\\text { on the job }\end{array} & \text { Salary (\$) } \\\hline 4 & 340 \\\hline 12 & 850 \\\hline 7 & 570 \\\hline 5 & 470 \\\hline 11 & 820 \\\hline 8 & 610 \\\hline 9 & 630 \\\hline 13 & 900 \\\hline 10 & 800 \\\hline 6 & 480 \\\hline\end{array} -The best-fitting line maximizes the residuals.

(True/False)
4.7/5
(44)

Standard residuals:

(Multiple Choice)
4.8/5
(35)

Use the data given below to answer the following question(s). Following is an extract from the database of a construction company.The table shows the height of walls in feet and the cost of raising them.The estimated simple linear regression equation is given as Ŷ = b0 + b1X.(Hint: Use Excel functions).  Height  (ft)  Cost ($) 46703430781091100679088805760111200\begin{array} { | r | r | } \hline \begin{array} { l } \text { Height } \\\text { (ft) }\end{array} & \text { Cost (\$) } \\\hline 4 & 670 \\\hline 3 & 430 \\\hline 7 & 810 \\\hline 9 & 1100 \\\hline 6 & 790 \\\hline 8 & 880 \\\hline 5 & 760 \\\hline 11 & 1200 \\\hline\end{array} -For a simple linear regression model, significance of regression is:

(Multiple Choice)
4.7/5
(35)

Use the data given below to answer the following question(s). Following is an extract from a firm's database detailing the number of hours spent on the job by employees and their corresponding pay.(Note: Assume a level of significance of 0.05 wherever necessary.)  Hours spent  on the job  Salary ($) 43401285075705470118208610963013900108006480\begin{array} { | r | r | } \hline \begin{array} { l } \text { Hours spent } \\\text { on the job }\end{array} & \text { Salary (\$) } \\\hline 4 & 340 \\\hline 12 & 850 \\\hline 7 & 570 \\\hline 5 & 470 \\\hline 11 & 820 \\\hline 8 & 610 \\\hline 9 & 630 \\\hline 13 & 900 \\\hline 10 & 800 \\\hline 6 & 480 \\\hline\end{array} -List the systematic approach to building good multiple regression models.

(Essay)
4.7/5
(34)

Use the data given below to answer the following question(s). Following is an extract from the database of a construction company.The table shows the height of walls in feet and the cost of raising them.The estimated simple linear regression equation is given as Ŷ = b0 + b1X.(Hint: Use Excel functions).  Height  (ft)  Cost ($) 46703430781091100679088805760111200\begin{array} { | r | r | } \hline \begin{array} { l } \text { Height } \\\text { (ft) }\end{array} & \text { Cost (\$) } \\\hline 4 & 670 \\\hline 3 & 430 \\\hline 7 & 810 \\\hline 9 & 1100 \\\hline 6 & 790 \\\hline 8 & 880 \\\hline 5 & 760 \\\hline 11 & 1200 \\\hline\end{array} -The R² value:

(Multiple Choice)
4.9/5
(36)

Use the data given below to answer the following question(s). Following is an extract from the database of a construction company.The table shows the height of walls in feet and the cost of raising them.The estimated simple linear regression equation is given as Ŷ = b0 + b1X.(Hint: Use Excel functions).  Height  (ft)  Cost ($) 46703430781091100679088805760111200\begin{array} { | r | r | } \hline \begin{array} { l } \text { Height } \\\text { (ft) }\end{array} & \text { Cost (\$) } \\\hline 4 & 670 \\\hline 3 & 430 \\\hline 7 & 810 \\\hline 9 & 1100 \\\hline 6 & 790 \\\hline 8 & 880 \\\hline 5 & 760 \\\hline 11 & 1200 \\\hline\end{array} -What is the value of the coefficient b₁?

(Multiple Choice)
4.7/5
(36)
Showing 41 - 50 of 50
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)