Exam 9: Regression Analysis

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The following table exhibits the age of antique furniture and the corresponding prices.Use the table to answer the following question(s).(Hint: Use scatter diagram and the Excel Trendline tool where necessary). Number of years Value (\ ) 78 930 91 1010 83 970 159 1950 134 1610 210 2880 88 980 178 2010 124 1370 72 900 -In a linear relationship, which of the following accounts for the many possible values of the dependent variable that vary around the mean?

(Multiple Choice)
4.8/5
(41)

Use the data given below to answer the following question(s). Following is an extract from the database of a construction company.The table shows the height of walls in feet and the cost of raising them.The estimated simple linear regression equation is given as Ŷ = b0 + b1X.(Hint: Use Excel functions).  Height  (ft)  Cost ($) 46703430781091100679088805760111200\begin{array} { | r | r | } \hline \begin{array} { l } \text { Height } \\\text { (ft) }\end{array} & \text { Cost (\$) } \\\hline 4 & 670 \\\hline 3 & 430 \\\hline 7 & 810 \\\hline 9 & 1100 \\\hline 6 & 790 \\\hline 8 & 880 \\\hline 5 & 760 \\\hline 11 & 1200 \\\hline\end{array} -What is the value of the coefficient b₀?

(Multiple Choice)
4.9/5
(35)

The following table exhibits the age of antique furniture and the corresponding prices.Use the table to answer the following question(s).(Hint: Use scatter diagram and the Excel Trendline tool where necessary). Number of years Value (\ ) 78 930 91 1010 83 970 159 1950 134 1610 210 2880 88 980 178 2010 124 1370 72 900 -What is the relationship between the age of the furniture and their values?

(Multiple Choice)
4.9/5
(29)

Use the data given below to answer the following question(s). Following is an extract from a firm's database detailing the number of hours spent on the job by employees and their corresponding pay.(Note: Assume a level of significance of 0.05 wherever necessary.)  Hours spent  on the job  Salary ($) 43401285075705470118208610963013900108006480\begin{array} { | r | r | } \hline \begin{array} { l } \text { Hours spent } \\\text { on the job }\end{array} & \text { Salary (\$) } \\\hline 4 & 340 \\\hline 12 & 850 \\\hline 7 & 570 \\\hline 5 & 470 \\\hline 11 & 820 \\\hline 8 & 610 \\\hline 9 & 630 \\\hline 13 & 900 \\\hline 10 & 800 \\\hline 6 & 480 \\\hline\end{array} -A good regression model has the fewest number of explanatory variables providing an adequate interpretation of the dependent variable.

(True/False)
4.8/5
(32)

In a curvilinear regression model, the ________ represents the curvilinear effect.

(Multiple Choice)
4.9/5
(27)

The following table exhibits the age of antique furniture and the corresponding prices.Use the table to answer the following question(s).(Hint: Use scatter diagram and the Excel Trendline tool where necessary). Number of years Value (\ ) 78 930 91 1010 83 970 159 1950 134 1610 210 2880 88 980 178 2010 124 1370 72 900 -Which of the following equations correctly expresses the relationship between the two variables?

(Multiple Choice)
4.9/5
(34)

Use the data given below to answer the following question(s). Following is an extract from a firm's database detailing the number of hours spent on the job by employees and their corresponding pay.(Note: Assume a level of significance of 0.05 wherever necessary.)  Hours spent  on the job  Salary ($) 43401285075705470118208610963013900108006480\begin{array} { | r | r | } \hline \begin{array} { l } \text { Hours spent } \\\text { on the job }\end{array} & \text { Salary (\$) } \\\hline 4 & 340 \\\hline 12 & 850 \\\hline 7 & 570 \\\hline 5 & 470 \\\hline 11 & 820 \\\hline 8 & 610 \\\hline 9 & 630 \\\hline 13 & 900 \\\hline 10 & 800 \\\hline 6 & 480 \\\hline\end{array} -Explain the concept of curvilinear regression model.

(Essay)
4.7/5
(35)

Use the data given below to answer the following question(s). Following is an extract from the database of a construction company.The table shows the height of walls in feet and the cost of raising them.The estimated simple linear regression equation is given as Ŷ = b0 + b1X.(Hint: Use Excel functions).  Height  (ft)  Cost ($) 46703430781091100679088805760111200\begin{array} { | r | r | } \hline \begin{array} { l } \text { Height } \\\text { (ft) }\end{array} & \text { Cost (\$) } \\\hline 4 & 670 \\\hline 3 & 430 \\\hline 7 & 810 \\\hline 9 & 1100 \\\hline 6 & 790 \\\hline 8 & 880 \\\hline 5 & 760 \\\hline 11 & 1200 \\\hline\end{array} -What is the estimated cost of raising a 10-inch wall?

(Multiple Choice)
4.8/5
(23)

Use the data given below to answer the following question(s). Following is an extract from a firm's database detailing the number of hours spent on the job by employees and their corresponding pay.(Note: Assume a level of significance of 0.05 wherever necessary.)  Hours spent  on the job  Salary ($) 43401285075705470118208610963013900108006480\begin{array} { | r | r | } \hline \begin{array} { l } \text { Hours spent } \\\text { on the job }\end{array} & \text { Salary (\$) } \\\hline 4 & 340 \\\hline 12 & 850 \\\hline 7 & 570 \\\hline 5 & 470 \\\hline 11 & 820 \\\hline 8 & 610 \\\hline 9 & 630 \\\hline 13 & 900 \\\hline 10 & 800 \\\hline 6 & 480 \\\hline\end{array} -Interpret the confidence intervals.

(Essay)
4.8/5
(32)

A regression model that involves a single independent variable is called ________.

(Multiple Choice)
4.8/5
(40)

The following table exhibits the age of antique furniture and the corresponding prices.Use the table to answer the following question(s).(Hint: Use scatter diagram and the Excel Trendline tool where necessary). Number of years Value (\ ) 78 930 91 1010 83 970 159 1950 134 1610 210 2880 88 980 178 2010 124 1370 72 900 -Which of the following is true about the observed errors associated with estimating the value of the dependent variable using the regression line?

(Multiple Choice)
4.9/5
(38)

When using the t-statistic in multiple regression to determine if a variable should be removed:

(Multiple Choice)
4.8/5
(39)

Use the data given below to answer the following question(s). Following is an extract from a firm's database detailing the number of hours spent on the job by employees and their corresponding pay.(Note: Assume a level of significance of 0.05 wherever necessary.)  Hours spent  on the job  Salary ($) 43401285075705470118208610963013900108006480\begin{array} { | r | r | } \hline \begin{array} { l } \text { Hours spent } \\\text { on the job }\end{array} & \text { Salary (\$) } \\\hline 4 & 340 \\\hline 12 & 850 \\\hline 7 & 570 \\\hline 5 & 470 \\\hline 11 & 820 \\\hline 8 & 610 \\\hline 9 & 630 \\\hline 13 & 900 \\\hline 10 & 800 \\\hline 6 & 480 \\\hline\end{array} -Draw conclusions for test of hypothesis for regression coefficients.

(Essay)
4.9/5
(34)

Which of the following is true about multicollinearity?

(Multiple Choice)
4.9/5
(31)

Use the data given below to answer the following question(s). Following is an extract from the database of a construction company.The table shows the height of walls in feet and the cost of raising them.The estimated simple linear regression equation is given as Ŷ = b0 + b1X.(Hint: Use Excel functions).  Height  (ft)  Cost ($) 46703430781091100679088805760111200\begin{array} { | r | r | } \hline \begin{array} { l } \text { Height } \\\text { (ft) }\end{array} & \text { Cost (\$) } \\\hline 4 & 670 \\\hline 3 & 430 \\\hline 7 & 810 \\\hline 9 & 1100 \\\hline 6 & 790 \\\hline 8 & 880 \\\hline 5 & 760 \\\hline 11 & 1200 \\\hline\end{array} -Which of the following statements is true when using the Excel Regression tool?

(Multiple Choice)
4.8/5
(28)

Use the data given below to answer the following question(s). Following is an extract from a firm's database detailing the number of hours spent on the job by employees and their corresponding pay.(Note: Assume a level of significance of 0.05 wherever necessary.)  Hours spent  on the job  Salary ($) 43401285075705470118208610963013900108006480\begin{array} { | r | r | } \hline \begin{array} { l } \text { Hours spent } \\\text { on the job }\end{array} & \text { Salary (\$) } \\\hline 4 & 340 \\\hline 12 & 850 \\\hline 7 & 570 \\\hline 5 & 470 \\\hline 11 & 820 \\\hline 8 & 610 \\\hline 9 & 630 \\\hline 13 & 900 \\\hline 10 & 800 \\\hline 6 & 480 \\\hline\end{array} -An increase in adjusted R² indicates that the regression model has improved.

(True/False)
4.8/5
(33)

Which of the following is true when testing for normality of errors?

(Multiple Choice)
4.8/5
(31)

A(n)________ is an extreme value that is different from the rest of the data.

(Multiple Choice)
5.0/5
(39)

How many additional dummy variables are required if a categorical variable has 4 levels?

(Multiple Choice)
4.9/5
(34)

Which of the following is true about multiple linear regression?

(Multiple Choice)
4.8/5
(37)
Showing 21 - 40 of 50
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)