Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the iterated integral. 13y312xydxdy\int _ { 1 } ^ { 3 } \int _ { y } ^ { 3 } 12 x y d x d y

Free
(Multiple Choice)
4.8/5
(42)
Correct Answer:
Verified

A

Find the volume of the solid bounded in the first octanat bounded by the cylinder z=9y2z = 9 - y ^ { 2 } and the planes x=1x = 1 .

Free
(Short Answer)
4.8/5
(34)
Correct Answer:
Verified

18

Calculate the iterated integral. 0x0101y24ysinxdzdydx\int _ { 0 } ^ { x } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } 4 y \sin x d z d y d x

Free
(Multiple Choice)
4.8/5
(30)
Correct Answer:
Verified

A

Use spherical coordinates. Evaluate B(x2+y2+z2)2dV\iiint _ { B } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 2 } d V , where BB is the ball with center the origin and radius 5 .

(Multiple Choice)
4.8/5
(41)

Find the mass of the lamina that occupies the region DD and has the given density function. Round your answer to two decimal places. R={(x,y)1x3,1y4}ρ(x,y)=5y2R = \{ ( x , y ) \mid 1 \leq x \leq 3,1 \leq y \leq 4 \} \rho ( x , y ) = 5 y ^ { 2 }

(Short Answer)
4.8/5
(27)

Use polar coordinates to find the volume of the solid inside the cylinder x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 and the ellipsoid 2x2+2y2+z2=642 x ^ { 2 } + 2 y ^ { 2 } + z ^ { 2 } = 64 .

(Multiple Choice)
4.8/5
(33)

Evaluate the iterated integral by converting to polar coordinates.Round the answer to two decimal places. 55025y2(x2+y2)3/2dxdy.\int _ { - 5 } ^ { 5 } \int _ { 0 } ^ { \sqrt { 25 - y ^ { 2 } } } \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 3 / 2 } d x d y .

(Multiple Choice)
4.8/5
(27)

Calculate the iterated integral. 11015yeyydxdy\int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { 1 } 5 y e ^ { y y } d x d y

(Multiple Choice)
4.8/5
(38)

Determine whether to use polar coordinates or rectangular coordinates to evaluate the integral Rf(x,y)dA\iint _ { R } f ( x , y ) d A , where ff is a continuous function. Then write an expression for the (iterated) integral.  Determine whether to use polar coordinates or rectangular coordinates to evaluate the integral  \iint _ { R } f ( x , y ) d A , where  f  is a continuous function. Then write an expression for the (iterated) integral.

(Essay)
4.9/5
(38)

 Sketch the solid whose volume is given by the iterated integral 0202x02xyf(x,y,z)dzdydx\text { Sketch the solid whose volume is given by the iterated integral } \int _ { 0 } ^ { 2 } \int _ { 0 } ^ { 2 - x } \int _ { 0 } ^ { 2 - x - y } f ( x , y , z ) d z d y d x \text {. }

(Essay)
4.9/5
(39)

Calculate the iterated integral. 0x0101y24ysinxdzdydx\int _ { 0 } ^ { x } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } 4 y \sin x d z d y d x

(Multiple Choice)
4.7/5
(33)

Find the area of the surface SS where SS is the part of the sphere x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 that lies inside the cylinder x24x+y2=0x ^ { 2 } - 4 x + y ^ { 2 } = 0 .

(Short Answer)
4.7/5
(34)

Evaluate the integral Rx2x2+y2dA\iint _ { R } \frac { x ^ { 2 } } { x ^ { 2 } + y ^ { 2 } } d A , where RR is the annular region bounded by the circles x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 and x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 , by changing to polar coordinates.

(Short Answer)
4.8/5
(32)

Use cylindrical coordinates to evaluate Tx2+y2dV\iiint _ { T } \sqrt { x ^ { 2 } + y ^ { 2 } } d V , where TT is the solid bounded by the cylinder x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and the planes z=1z = 1 and z=5z = 5 .

(Multiple Choice)
4.8/5
(32)

Describe the region whose area is given by the integral. 0π/40cos2θ2rdrdθ\int _ { 0 } ^ { \pi / 4 } \int _ { 0 } ^ { \cos 2 \theta } 2 r d r d \theta

(Short Answer)
5.0/5
(41)

Use spherical coordinates to evaluate Bx2+y2+z2dV\iiint _ { B } \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } d V , where BB is the ball x2+y2+z210x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 10 .

(Multiple Choice)
4.7/5
(30)

Find the area of the surface SS where SS is the part of the plane z=3x2+yz = 3 x ^ { 2 } + y that lies above the triangular region with vertices (0,0),(2,0)( 0,0 ) , ( 2,0 ) , and (2,2)( 2,2 ) .

(Short Answer)
4.8/5
(31)

Evaluate the integral Bf(x,y,z)dV\iiint _ { B } f ( x , y , z ) d V where f(x,y,z)=xy2+yz2f ( x , y , z ) = x y ^ { 2 } + y z ^ { 2 } and B={(x,y,z)0x2,1y1,0z3}B = \{ ( x , y , z ) \mid 0 \leq x \leq 2 , - 1 \leq y \leq 1,0 \leq z \leq 3 \} with respect to x,yx , y , and zz , in that order.

(Multiple Choice)
4.8/5
(29)

Find the mass and the center of mass of the lamina occupying the region RR , where RR is the region bounded by the graphs of y=sin3x,y=0,x=0y = \sin 3 x , y = 0 , x = 0 , and x=π3x = \frac { \pi } { 3 } , and having the mass density ρ(x,y)=4y\rho ( x , y ) = 4 y

(Short Answer)
4.8/5
(34)

Use cylindrical coordinates to evaluate the triple integral EydV\iiint _ { E } y d V where EE is the solid that lies between the cylinders x2+y2=3x ^ { 2 } + y ^ { 2 } = 3 and x2+y2=7x ^ { 2 } + y ^ { 2 } = 7 above the xyx y -plane and below the plane z=x+4z = x + 4 .

(Multiple Choice)
4.9/5
(39)
Showing 1 - 20 of 60
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)