Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Calculate the iterated integral. 010y5cos(y2)dxdy\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { y } 5 \cos \left( y ^ { 2 } \right) d x d y

(Short Answer)
4.8/5
(42)

Evaluate the double integral by first identifying it as the volume of a solid. R(152x)dA,R={(x,y)2x5,3y8}\iint _ { R } ( 15 - 2 x ) d A , R = \{ ( x , y ) \mid 2 \leq x \leq 5,3 \leq y \leq 8 \}

(Multiple Choice)
4.8/5
(44)

Use spherical coordinate to find the volume above the cone z2=x2+y2z ^ { 2 } = x ^ { 2 } + y ^ { 2 } and inside sphere x2+y2+z2=2azx ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 2 a z .

(Short Answer)
4.9/5
(39)

Use polar coordinates to find the volume of the solid under the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and above the disk x2+y29x ^ { 2 } + y ^ { 2 } \leq 9 .

(Multiple Choice)
4.9/5
(36)

Find the Jacobian of the transformation. x=5αsinβ,y=4αcosβx = 5 \alpha \sin \beta , y = 4 \alpha \cos \beta

(Multiple Choice)
4.9/5
(22)

Calculate the iterated integral. 1403(3+4xy)dxdy\int _ { 1 } ^ { 4 } \int _ { 0 } ^ { 3 } ( 3 + 4 x y ) d x d y

(Short Answer)
4.8/5
(31)

Use the given transformation to evaluate the integral. RxydA\iint _ { R } x y d A , where RR is the region in the first quadrant bounded by the lines y=x,y=3xy = x , y = 3 x and the hyperbolas xy=2,xy=4;x=uv,y=vx y = 2 , x y = 4 ; x = \frac { u } { v } , y = v .

(Multiple Choice)
4.9/5
(47)

Find the area of the surface. The part of the surface z=25x2y2z = 25 - x ^ { 2 } - y ^ { 2 } that lies above the xyx y -plane.

(Multiple Choice)
4.8/5
(35)

Evaluate the integral by changing to polar coordinates. Dex2y2dA\iint _ { D } e ^ { - x ^ { 2 } - y ^ { 2 } } d A DD is the region bounded by the semicircle x=9y2x = \sqrt { 9 - y ^ { 2 } } and the yy -axis.

(Short Answer)
4.7/5
(40)

Evaluate the double integral by first identifying it as the volume of a solid. R(152x)dA,R={(x,y)3x7,3y5}\iint _ { R } ( 15 - 2 x ) d A , R = \{ ( x , y ) \mid 3 \leq x \leq 7,3 \leq y \leq 5 \}

(Multiple Choice)
4.8/5
(39)

Calculate the double integral. R(6x2y310x4)dA,R={(x,y)0x1,0y4}\iint _ { R } \left( 6 x ^ { 2 } y ^ { 3 } - 10 x ^ { 4 } \right) d A , R = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 4 \}

(Multiple Choice)
4.9/5
(30)

Use spherical coordinates. Evaluate B(x2+y2+z2)2dV\iiint _ { B } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 2 } d V , where BB is the ball with center the origin and radius 4 .

(Multiple Choice)
4.8/5
(31)

Sketch the solid bounded by the graphs of the equations z=x2+y2z = x ^ { 2 } + y ^ { 2 } and z=50x2y2z = 50 - x ^ { 2 } - y ^ { 2 } , and then use a triple integral to find the volume of the solid.

(Essay)
4.8/5
(36)

Calculate the iterated integral.Round your answer to two decimal places. 06034x+4ydxdy\int _ { 0 } ^ { 6 } \int _ { 0 } ^ { 3 } \sqrt { 4 x + 4 y } d x d y

(Multiple Choice)
4.7/5
(38)

 Evaluate D4x2y2dA where D is the figure bounded by y=1,y=2,x=0 and x=y\text { Evaluate } \iint _ { D } 4 x ^ { 2 } y ^ { 2 } d A \text { where } D \text { is the figure bounded by } y = 1 , y = 2 , x = 0 \text { and } x = y \text {. }

(Short Answer)
4.8/5
(29)

Calculate the double integral. R(9x2y315x4)dA,R={(x,y)0x1,0y4}\iint _ { R } \left( 9 x ^ { 2 } y ^ { 3 } - 15 x ^ { 4 } \right) d A , R = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 4 \}

(Multiple Choice)
4.8/5
(45)

Use cylindrical coordinates to evaluate Tx2+y2dV\iiint _ { T } \sqrt { x ^ { 2 } + y ^ { 2 } } d V , where TT is the solid bounded by the cylinder x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and the planes z=4z = 4 and z=8z = 8 .

(Multiple Choice)
4.9/5
(33)

Find the center of mass of the lamina of the region shown if the density of the circular lamina is four times that of the rectangular lamina. Find the center of mass of the lamina of the region shown if the density of the circular lamina is four times that of the rectangular lamina.

(Essay)
4.8/5
(30)

Use the Midpoint Rule with four squares of equal size to estimate the double integral. Rcos(x4+y4)dA,R={(x,y)0x0.5,0y0.5}\iint _ { R } \cos \left( x ^ { 4 } + y ^ { 4 } \right) d A , R = \{ ( x , y ) \mid 0 \leq x \leq 0.5,0 \leq y \leq 0.5 \}

(Multiple Choice)
4.8/5
(29)

Find the center of mass of a lamina in the shape of an isosceles right triangle with equal sides of length a=25a = 25 if the density at any point is proportional to the square of the distance from the vertex opposite the hypotenuse. Assume the vertex opposite the hypotenuse is located at (0,0)( 0,0 ) , and that the sides are along the positive axes.

(Multiple Choice)
4.8/5
(31)
Showing 21 - 40 of 60
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)