Exam 13: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Reparametrize the curve with respect to arc length measured from the point where t=0t = 0 in the direction of increasing tt . r(t)=(7+3t)i+(10+9t)j(6t)k\mathbf { r } ( t ) = ( 7 + 3 t ) \mathbf { i } + ( 10 + 9 t ) \mathbf { j } - ( 6 t ) \mathbf { k }

Free
(Multiple Choice)
4.8/5
(44)
Correct Answer:
Verified

C

Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=et{cos6t,sin6t,0}\mathbf { r } ( t ) = e ^ { t } \{ \cos 6 t , \sin 6 t , 0 \}

Free
(Multiple Choice)
5.0/5
(37)
Correct Answer:
Verified

A

Find the limit. limt0+8cost,24sint,5tlnt\lim _ { t \rightarrow 0 ^ { + } } \langle 8 \cos t , 24 \sin t , 5 t \ln t \rangle

Free
(Multiple Choice)
4.8/5
(32)
Correct Answer:
Verified

E

Find the velocity, acceleration, and speed of an object with position function r(t)=4sinti+costj\mathbf { r } ( t ) = 4 \sin t \mathbf { i } + \cos t \mathbf { j } for t=π4t = \frac { \pi } { 4 } . Sketch the path of the object and its velocity and acceleration vectors.

(Essay)
4.7/5
(39)

A projectile is fired with an initial speed of 700 m/s700 \mathrm {~m} / \mathrm { s } and angle of elevation 6060 ^ { \circ } . Find the range of the projectile.

(Multiple Choice)
4.7/5
(28)

 Find an expression for ddt[x(t).(y(t)×z(t))]\text { Find an expression for } \frac { d } { d t } [ x ( t ) . ( y ( t ) \times z ( t ) ) ] \text {. }

(Short Answer)
4.8/5
(37)

The helix r1(t)=4costi+sintj+tk\mathbf { r } _ { 1 } ( t ) = 4 \cos t \mathbf { i } + \sin t \mathbf { j } + t \mathbf { k } intersects the curve r2(t)=(4+t)i+6t2j+5t3k\mathbf { r } _ { 2 } ( t ) = ( 4 + t ) \mathbf { i } + 6 t ^ { 2 } \mathbf { j } + 5 t ^ { 3 } \mathbf { k } at the point (4,0,0)( 4,0,0 ) . Find the angle of intersection.

(Multiple Choice)
4.7/5
(38)

Sketch the curve of the vector function r(t)=3ti+(3t+8)j,1t2\mathbf { r } ( t ) = 3 t \mathbf { i } + ( 3 t + 8 ) \mathbf { j } , - 1 \leq t \leq 2 , and indicate the orientation of the curve.

(Essay)
4.8/5
(36)

Find the speed of a particle with the given position function. r(t)=42ti+e4tje4tk\mathbf { r } ( t ) = 4 \sqrt { 2 } t \mathbf { i } + e ^ { 4 t } \mathbf { j } - e ^ { - 4 t } \mathbf { k }

(Multiple Choice)
4.8/5
(38)

The torsion of a curve defined by r(t)\mathbf { r } ( t ) is given by τ=(rt×rtt)rtrt×rt2\tau = \frac { \left( \mathbf { r } ^ { t } \times \mathbf { r } ^ { tt } \right) \cdot \mathbf { r } ^ {t} } { \left| \mathbf { r } ^ { t } \times \mathbf { r } ^ { t } \right| ^ { 2 } } Find the torsion of the curve defined by r(t)=cos2ti+sin2tj+5tk\mathbf { r } ( t ) = \cos 2 t \mathbf { i } + \sin 2 t \mathbf { j } + 5 t \mathbf { k } .

(Multiple Choice)
4.9/5
(35)

Find the length of the curve r(t)=2titj+tk,2t1\mathbf { r } ( t ) = - 2 t \mathbf { i } - t \mathbf { j } + t \mathbf { k } , - 2 \leq t \leq 1 .

(Multiple Choice)
4.9/5
(33)

Reparametrize the curve with respect to arc length measured from the point where t=0t = 0 in the direction of increasing tt . r(t)=(5+3t)i+(8+9t)j(6t)k\mathbf { r } ( t ) = ( 5 + 3 t ) \mathbf { i } + ( 8 + 9 t ) \mathbf { j } - ( 6 t ) \mathbf { k }

(Multiple Choice)
4.9/5
(40)

Sketch the curve of the vector function r(t)=5sinti+6costjr ( t ) = 5 \sin t \mathbf { i } + 6 \cos t \mathbf { j } , and indicate the orientation of the curve.

(Essay)
4.9/5
(38)

A particle moves with position function r(t)=(21t7t35)i+21t2j\mathbf { r } ( t ) = \left( 21 t - 7 t ^ { 3 } - 5 \right) \mathbf { i } + 21 t ^ { 2 } \mathbf { j } . Find the tangential component of the acceleration vector.

(Multiple Choice)
4.8/5
(35)

Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=5ti+(t2+5)j\mathbf { r } ( t ) = 5 t \mathbf { i } + \left( t ^ { 2 } + 5 \right) \mathbf { j } .

(Short Answer)
4.9/5
(29)

Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=3sinti+3costj+5tk\mathbf { r } ( t ) = 3 \sin t \mathbf { i } + 3 \cos t \mathbf { j } + 5 t \mathbf { k } .

(Multiple Choice)
4.8/5
(38)

A mortar shell is fired with a muzzle speed of 250 ft/sec.Find the angle of elevation of the mortar if the shell strikes a target located 1100 ft away.Round your answer to 2 decimal places.

(Multiple Choice)
4.8/5
(37)

 A particle moves with position function r(t)=5costi+5sintj+5tk\text { A particle moves with position function } \mathbf { r } ( t ) = 5 \cos t \mathbf { i } + 5 \sin t \mathbf { j } + 5 t \mathbf { k } \text {. } Find the normal component of the acceleration vector.

(Short Answer)
4.8/5
(44)

Let CC be a smooth curve defined by r(t)=2i+3tj+2t2k\mathbf { r } ( t ) = 2 \mathbf { i } + 3 t \mathbf { j } + 2 t ^ { 2 } \mathbf { k } , and let T(t)\mathrm { T } ( t ) and N(t)\mathrm { N } ( t ) be the unit tangent vector and unit normal vector to CC corresponding to tt . The plane determined by T\mathbf { T } and N\mathbf { N } is called the osculating plane. Find an equation of the osculating plane of the curve described by r(t)\mathbf { r } ( t ) at t=1t = 1 .

(Multiple Choice)
4.7/5
(44)

Find a vector function that represents the curve of intersection of the two surfaces: the top half of the ellipsoid x2+5y2+5z2=25x ^ { 2 } + 5 y ^ { 2 } + 5 z ^ { 2 } = 25 and the parabolic cylinder y=x2y = x ^ { 2 } .

(Multiple Choice)
4.8/5
(33)
Showing 1 - 20 of 58
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)