Exam 17: Second-Order Differential Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the initial-value problem. 2ytt+19yt+24y=0,y(0)=0,yt(0)=82 y ^ { tt } + 19 y ^ {t } + 24 y = 0 , y ( 0 ) = 0 , y ^ { t } ( 0 ) = 8

Free
(Short Answer)
4.9/5
(38)
Correct Answer:
Verified

1613e3x21613e3x\frac { 16 } { 13 } e ^ { - \frac { 3 x } { 2 } } - \frac { 16 } { 13 } e ^ { - 3 x }

A spring with a mass of 6 kg6 \mathrm {~kg} has damping constant 28 and spring constant 195 . Find the damping constant that would produce critical damping.

Free
(Multiple Choice)
4.8/5
(39)
Correct Answer:
Verified

C

Use power series to solve the differential equation. yt=4xy.y ^ { t } = 4 x y .

Free
(Multiple Choice)
4.8/5
(41)
Correct Answer:
Verified

B

Solve the initial-value problem using the method of undetermined coefficients. yttyt=xex,y(0)=0,yt(0)=3y ^ { tt } - y ^ { t } = x e ^ { x } , y ( 0 ) = 0 , y ^ { t } ( 0 ) = 3

(Short Answer)
4.7/5
(41)

Solve the differential equation. ytt+4yt5y=0y ^ { tt } + 4 y ^ { t } - 5 y = 0

(Multiple Choice)
4.8/5
(46)

Solve the boundary-value problem, if possible. ytt+14yt+49y=0,y(0)=0,y(1)=3y ^ { tt } + 14 y ^ { t } + 49 y = 0 , y ( 0 ) = 0 , y ( 1 ) = 3

(Multiple Choice)
4.9/5
(38)

A spring with a 16kg16 - \mathrm { kg } mass has natural length 0.8 m0.8 \mathrm {~m} and is maintained stretched to a length of 1.21.2 m\mathrm { m } by a force of 19.6 N19.6 \mathrm {~N} . If the spring is compressed to a length of 0.4 m0.4 \mathrm {~m} and then released with zero velocity, find the position x(t)x ( t ) of the mass at any time tt .

(Multiple Choice)
4.8/5
(36)

Solve the differential equation. ytt8yt+32y=0y ^ {tt } - 8 y ^ { t } + 32 y = 0

(Multiple Choice)
4.9/5
(36)

Solve the boundary-value problem, if possible. ytt+10yt+25y=0,y(0)=0,y(1)=9y ^ { tt } + 10 y ^ { t } + 25 y = 0 , y ( 0 ) = 0 , y ( 1 ) = 9

(Short Answer)
4.9/5
(43)

Solve the differential equation using the method of variation of parameters. yttyt=e9xy ^ { tt } - y ^ { t } = e ^ { 9 x }

(Multiple Choice)
4.9/5
(31)

Solve the differential equation. ytt+10yt+41y=0y ^ {tt } + 10 y ^ {t } + 41 y = 0

(Short Answer)
4.8/5
(36)

Graph the particular solution and several other solutions. 2ytt+3yt+y=2+cos2x2 y ^ { tt} + 3 y ^ { t } + y = 2 + \cos 2 x

(Multiple Choice)
4.8/5
(39)

The solution of the initial-value problem x2ytt+xy+x2y=0,y(0)=1,yt(0)=0x ^ { 2 } y ^ { tt} + x y ^ { \prime } + x ^ { 2 } y = 0 , y ( 0 ) = 1 , y ^ { t } ( 0 ) = 0 is called a Bessel function of order 0 . Solve the initial - value problem to find a power series expansion for the Bessel function.

(Multiple Choice)
4.8/5
(39)

Solve the boundary-value problem, if possible. ytt+5yt24y=0,y(0)=0,y(2)=1y ^ {tt } + 5 y ^ {t } - 24 y = 0 , y ( 0 ) = 0 , y ( 2 ) = 1

(Multiple Choice)
4.8/5
(38)

Solve the differential equation. ytt2yt=e3xy ^ { tt } - 2 y ^ { t } = e ^ { 3 x }

(Short Answer)
4.9/5
(27)

Solve the differential equation using the method of undetermined coefficients. ytt5yt=sin15xy ^ { tt } - 5 y ^ { t } = \sin 15 x

(Multiple Choice)
4.8/5
(39)

Suppose a spring has mass MM and spring constant kk and let ω=k/M\omega = \sqrt { k / M } . Suppose that the damping constant is so small that the damping force is negligible. If an external force F(t)=6F0cos(ωt)F ( t ) = 6 F _ { 0 } \cos ( \omega t ) is applied (the applied frequency equals the natural frequency), use the method of undetermined coefficients to find the equation that describes the motion of the mass.

(Multiple Choice)
4.9/5
(45)

Solve the initial-value problem. ytt+8yt+41y=0,y(0)=1,yt(0)=2y ^ { tt } + 8 y ^ {t} + 41 y = 0 , y ( 0 ) = 1 , y ^ { t} ( 0 ) = 2

(Multiple Choice)
4.8/5
(36)

Use power series to solve the differential equation. ytt=36yy ^ {tt } = 36 y

(Multiple Choice)
4.9/5
(36)

Solve the differential equation using the method of undetermined coefficients. ytt3yt=sin9xy ^ { tt} - 3 y ^ { t } = \sin 9 x

(Multiple Choice)
4.7/5
(47)
Showing 1 - 20 of 60
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)