Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the work done by the force field F(x,y)=24xi+12(2y+1)j\mathbf { F } ( x , y ) = 24 x \mathbf { i } + 12 ( 2 y + 1 ) \mathbf { j } in moving an object along an arch of the cycloid r(t)=(tsin(t))i+(1cos(t))j,0t2π\mathbf { r } ( t ) = ( t - \sin ( t ) ) \mathbf { i } + ( 1 - \cos ( t ) ) \mathbf { j } , \quad 0 \leq t \leq 2 \pi .

Free
(Short Answer)
4.8/5
(41)
Correct Answer:
Verified

48π248 \pi ^ { 2 }

Use Green's Theorem to find the work done by the force F(x,y)=(6x7y2)i+3yj\mathbf { F } ( x , y ) = \left( 6 x - 7 y ^ { 2 } \right) \mathbf { i } + 3 y \mathbf { j } in moving a particle in the positive direction once around the triangle with vertices (0,0),(1,0)( 0,0 ) , ( 1,0 ) , and (0,1)( 0,1 ) .

Free
(Multiple Choice)
4.7/5
(41)
Correct Answer:
Verified

C

Evaluate Sf(x,y,z)dS\iint _ { S } f ( x , y , z ) d S . f(x,y,z)=2x+2y+5z;Sf ( x , y , z ) = 2 x + 2 y + 5 z ; S is the part of the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } between the planes z=1z = 1 and z=2z = 2 .

Free
(Multiple Choice)
4.8/5
(41)
Correct Answer:
Verified

C

The plot of a vector field is shown below. A particle is moved from the point (3,2)( - 3,2 ) to (3,2)( 3,2 ) . By inspection, determine whether the work done by F\mathbf { F } on the particle is positive, negative, or zero.  The plot of a vector field is shown below. A particle is moved from the point  ( - 3,2 )  to  ( 3,2 ) . By inspection, determine whether the work done by  \mathbf { F }  on the particle is positive, negative, or zero.

(Essay)
4.8/5
(35)

 Find the area of the part of paraboloid x=y2+z2 that lies inside the cylinder y2+z2=64\text { Find the area of the part of paraboloid } x = y ^ { 2 } + z ^ { 2 } \text { that lies inside the cylinder } y ^ { 2 } + z ^ { 2 } = 64 \text {. }

(Short Answer)
4.8/5
(35)

 Find the exact value of Cxejzds, where C is the line segment from (0,0,0) to (1,4,9)\text { Find the exact value of } \int _ { C } x e ^ { j z } d s , \text { where } C \text { is the line segment from } ( 0,0,0 ) \text { to } ( 1,4,9 ) \text {. }

(Short Answer)
4.7/5
(36)

Show that F\mathrm { F } is conservative, and find a function ff such that F=f\mathbf { F } = \nabla f , and use the result to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where CC is any curve from A(x0,y0,z0)A \left( x _ { 0 } , y _ { 0 } , z _ { 0 } \right) to B(x1,y1,z1)B \left( x _ { 1 } , y _ { 1 } , z _ { 1 } \right) . F(x,y,z)=21x2yi+(7x3+15y2z2)j+10y3zk;A(0,0,0)\mathbf { F } ( x , y , z ) = 21 x ^ { 2 } y \mathbf { i } + \left( 7 x ^ { 3 } + 15 y ^ { 2 } z ^ { 2 } \right) \mathbf { j } + 10 y ^ { 3 } z \mathbf { k } ; A ( 0,0,0 ) and B(1,0,3)B ( - 1,0 , - 3 )

(Multiple Choice)
4.9/5
(41)

Let SS be the cube with vertices (±1,±1,±1)( \pm 1 , \pm 1 , \pm 1 ) . Approximate Sx2+2y2+7z2\iint _ { S } \sqrt { x ^ { 2 } + 2 y ^ { 2 } + 7 z ^ { 2 } } by using a Riemann sum as in Definition 1, taking the patches SijS _ { i j } to be the squares that are the faces of the cube and the points PijP _ { i j } to be the centers of the squares.

(Multiple Choice)
4.9/5
(30)

Show that F\mathrm { F } is conservative, and find a function ff such that F=f\mathbf { F } = \nabla f , and use the result to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where CC is any curve from A(x0,y0,z0)A \left( x _ { 0 } , y _ { 0 } , z _ { 0 } \right) to B(x1,y1,z1)B \left( x _ { 1 } , y _ { 1 } , z _ { 1 } \right) . F(x,y,z)=27x2yi+(9x3+24y3z2)j+12y4zk;A(0,0,0)\mathbf { F } ( x , y , z ) = 27 x ^ { 2 } y \mathbf { i } + \left( 9 x ^ { 3 } + 24 y ^ { 3 } z ^ { 2 } \right) \mathbf { j } + 12 y ^ { 4 } z \mathbf { k } ; A ( 0,0,0 ) and B(1,0,1)B ( - 1,0,1 )

(Multiple Choice)
4.9/5
(34)

Evaluate the surface integral.Round your answer to four decimal places. S3zdS\iint _ { S } 3 z d S SS is surface x=y2+2z2,0y1,0z1x = y ^ { 2 } + 2 z ^ { 2 } , 0 \leq y \leq 1,0 \leq z \leq 1 .

(Multiple Choice)
4.9/5
(38)

Find a vector representation for the surface. The plane that passes through the point (2,4,3)( 2,4,3 ) and contains the vectors 3i+3j2k3 \mathbf { i } + 3 \mathbf { j } - 2 \mathbf { k } and 4i+j+5k4 \mathbf { i } + \mathbf { j } + 5 \mathbf { k }

(Short Answer)
4.9/5
(41)

Determine whether F\mathbf { F } is conservative. If so, find a function ff such that F=f..\mathbf { F } = \nabla f . . F(x,y,z)=(2sinh2z)i+(4e4zcos4y)j+(4xcosh2z)k\mathbf { F } ( x , y , z ) = ( 2 \sinh 2 z ) \mathbf { i } + \left( 4 e ^ { 4 z } \cos 4 y \right) \mathbf { j } + ( 4 x \cosh 2 z ) \mathbf { k }

(Short Answer)
5.0/5
(34)

Find the curl of the vector field. F(x,y,z)=8exsin(y)i+4excos(y)j+3zk\mathbf { F } ( x , y , z ) = 8 e ^ { x } \sin ( y ) \mathbf { i } + 4 e ^ { x } \cos ( y ) \mathbf { j } + 3 z \mathbf { k }

(Short Answer)
4.9/5
(35)

Suppose that f(x,y,z)=g(x2+y2+z2)f ( x , y , z ) = g \left( \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \right) where gg is a function of one variable such that g(6)=2g ( 6 ) = 2 Evaluate Sf(x,y,z)dS\iint _ { S } f ( x , y , z ) d S where SS is the sphere x2+y2+z2=36x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 36

(Multiple Choice)
4.7/5
(40)

Evaluate the line integral over the given curve CC . C4xyds\int _ { C } 4 x y d s , where CC is the line segment joining (4,5)( - 4 , - 5 ) to (5,4)( 5,4 )

(Short Answer)
4.8/5
(41)

Use Green's Theorem to evaluate the line integral along the positively oriented closed curve CC . C3xydx+4x2dy\oint _ { C } 3 x y d x + 4 x ^ { 2 } d y , where C\mathrm { C } is the triangle with vertices (0,0),(3,4)( 0,0 ) , ( 3,4 ) , and (0,4)( 0,4 )

(Multiple Choice)
4.8/5
(28)

Find the area of the surface SS where SS is the part of the surface x=yzx = y z that lies inside the cylinder y2+z2=16y ^ { 2 } + z ^ { 2 } = 16 .

(Short Answer)
4.9/5
(24)

Find the curl of the vector field. F(x,y,z)=(x9z)i+(7x+y+2z)j+(x16y)k\mathbf { F } ( x , y , z ) = ( x - 9 z ) \mathbf { i } + ( 7 x + y + 2 z ) \mathbf { j } + ( x - 16 y ) \mathbf { k }

(Short Answer)
4.8/5
(41)

Let ff be a scalar field. Determine whether the expression is meaningful. If so, state whether the expression represents a scalar field or a vector field. (gradf)\nabla ( \operatorname { grad } f )

(Short Answer)
4.9/5
(34)

Let DD be a region bounded by a simple closed path CC in the xyx y . Then the coordinates of the centroid (xˉ,yˉ)( \bar { x } , \bar { y } ) of DD are xˉ=12ACx2dy,yˉ=12ACy2dx\bar { x } = \frac { 1 } { 2 A } \oint _ { C } x ^ { 2 } d y , \bar { y } = - \frac { 1 } { 2 A } \oint _ { C } y ^ { 2 } d x where AA is the area of DD . Find the centroid of the triangle with vertices (0,0),(5,0)( 0,0 ) , ( 5,0 ) and (0,10)( 0,10 ) .

(Multiple Choice)
4.9/5
(46)
Showing 1 - 20 of 59
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)