Exam 4: Applications of Differentiation

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the indefinite integral. cos9xsinxdx\int \cos ^ { 9 } x \sin x d x

(Short Answer)
5.0/5
(31)

Evaluate the integral 198x23x+7xdx\int _ { 1 } ^ { 9 } \frac { 8 x ^ { 2 } - 3 x + 7 } { x } d x .

(Multiple Choice)
4.8/5
(42)

Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function. h(x)=1x5z2z4+1dzh ( x ) = \int _ { 1 } ^ { \sqrt { x } } \frac { 5 z ^ { 2 } } { z ^ { 4 } + 1 } d z

(Multiple Choice)
4.8/5
(38)

Alabama Instruments Company has set up a production line to manufacture a new calculator. The rate of production of these calculators after tt weeks is dxdt=5700(1160(t+22)2)\frac { d x } { d t } = 5700 \left( 1 - \frac { 160 } { ( t + 22 ) ^ { 2 } } \right) calculators per week. Production approaches 5,700 per week as time goes on, but the initial production is lower because of the workers' unfamiliarity with the new techniques. Find the number of calculators produced from the beginning of the third week to the end of the fourth week. Round the answer to the nearest integer.

(Short Answer)
4.8/5
(36)

Approximate the area under the curve y=5x2y = \frac { 5 } { x ^ { 2 } } from 1 to 2 using ten approximating rectangles of equal widths and right endpoints. Round the answer to the nearest hundredth.

(Short Answer)
4.9/5
(27)

Let F(x)=5x5t2dtF ( x ) = \int _ { 5 } ^ { x } 5 t ^ { 2 } d t . a. Use Part 1 of the Fundamental Theorem of Calculus to find F(x)F ^ { \prime } ( x ) . b. Use Part 2 of the Fundamental Theorem of Calculus to integrate 5x5t2dt\int _ { 5 } ^ { x } 5 t ^ { 2 } d t to obtain an alternative expression for F(x)F ( x ) . c. Differentiate the expression for F(x)F ( x ) found in part (b). The Fundamental Theorem of Calculus, Part 1 If ff is continuous on [a,b][ a , b ] , then the function FF defined by F(x)=axf(t)dtaxbF ( x ) = \int _ { a } ^ { x } f ( t ) d t \quad a \leq x \leq b is differentiable on (a,b)( a , b ) , and F(x)=ddxaxf(t)dt=f(x)F ^ { \prime } ( x ) = \frac { d } { d x } \int _ { a } ^ { x } f ( t ) d t = f ( x ) The Fundamental Theorem of Calculus, Part 2 If ff is continuous on [a,b][ a , b ] , then abf(x)dx=F(b)F(a)\int _ { a } ^ { b } f ( x ) d x = F ( b ) - F ( a ) where FF is any antiderivative of ff , that is, F=fF ^ { \prime } = f .

(Short Answer)
4.8/5
(38)

Evaluate the integral by making the given substitution. x2x3+2dx,u=x3+2\int x ^ { 2 } \sqrt { x ^ { 3 } + 2 } d x , \quad u = x ^ { 3 } + 2

(Short Answer)
4.9/5
(31)

Approximate the area under the curve y=sinxy = \sin x from 0 to π2\frac { \pi } { 2 } using 8 approximating rectangles of equal widths and right endpoints. The choices are rounded to the nearest hundredth.

(Short Answer)
4.9/5
(34)

Find the integral using an appropriate trigonometric substitution. x9x2dx\int x \sqrt { 9 - x ^ { 2 } } d x

(Short Answer)
4.8/5
(33)

 Use the graph of f shown in the figure to evaluate the integral by interpreting it geometrically. \text { Use the graph of } f \text { shown in the figure to evaluate the integral by interpreting it geometrically. } \text { Use the graph of } f \text { shown in the figure to evaluate the integral by interpreting it geometrically. }      \int_{-4}^{7} f(x) d x   Select the correct answer. 47f(x)dx\int_{-4}^{7} f(x) d x Select the correct answer.

(Multiple Choice)
4.9/5
(37)

The velocity of a car was read from its speedometer at ten-second intervals and recorded in the table. Use the Midpoint Rule to estimate the distance traveled by the car. t() v(/) t() v(/) 0 0 60 59 10 32 70 62 20 49 80 71 30 32 90 44 40 44 100 45 50 42

(Short Answer)
4.9/5
(38)

Find the area of the region that lies beneath the given curve. y=sinx,0xπ3y = \sin x , 0 \leq x \leq \frac { \pi } { 3 }

(Short Answer)
4.8/5
(31)

Find the integral using the indicated substitution. (4x+3)6dx,u=4x+3\int ( 4 x + 3 ) ^ { 6 } d x , \quad u = 4 x + 3 Select the correct answer.

(Multiple Choice)
4.9/5
(39)

Evaluate the indefinite integral. exex+5dx\int \frac { e ^ { x } } { e ^ { x } + 5 } d x

(Short Answer)
4.9/5
(37)

Evaluate the integral. 1361xdx\int _ { 1 } ^ { 36 } \frac { 1 } { \sqrt { x } } d x

(Short Answer)
4.8/5
(23)

 Find a function f(x) such that 5+axf(t)t2dt=12x for x>0 and some number a\text { Find a function } f ( x ) \text { such that } 5 + \int _ { a } ^ { x } \frac { f ( t ) } { t ^ { 2 } } d t = 12 \sqrt { x } \text { for } x > 0 \text { and some number } a \text {. }

(Short Answer)
4.9/5
(43)

Evaluate the Riemann sum for f(r)=6r2,0r2f ( r ) = 6 - r ^ { 2 } , 0 \leq r \leq 2 with four subintervals, taking the sample points to be right endpoints.

(Multiple Choice)
4.8/5
(29)

Evaluate the indefinite integral. sec2xtanxdx\int \sec ^ { 2 } x \tan x d x

(Short Answer)
4.9/5
(30)

Find the integral using an appropriate trigonometric substitution. x3x2+36dx\int \frac { x ^ { 3 } } { \sqrt { x ^ { 2 } + 36 } } d x Select the correct answer.

(Multiple Choice)
4.8/5
(37)

Find the derivative of the function. F(x)=xx2et5dtF ( x ) = \int _ { x } ^ { x ^ { 2 } } e ^ { t ^ { 5 } } d t

(Short Answer)
4.9/5
(45)
Showing 81 - 100 of 160
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)