Exam 7: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the average value of the function f(x)f ( x ) in the interval [π,π][ - \pi , \pi ] . f(x)=sin6xcos5xf ( x ) = \sin ^ { 6 } x \cos ^ { 5 } x

Free
(Multiple Choice)
4.9/5
(38)
Correct Answer:
Verified

B

Use the Trapezoidal Rule to approximate the integral with answers rounded to four decimal places. 01dx2x+4;n=7\int _ { 0 } ^ { 1 } \frac { d x } { 2 x + 4 } ; \quad n = 7

Free
(Short Answer)
4.7/5
(38)
Correct Answer:
Verified

0.2029

Use the Midpoint Rule to approximate the given integral with the specified value of nn . Compare your result to the actual value. Find the error in the approximation. 223exdx,n=62 \int _ { 2 } ^ { 3 } e ^ { - \sqrt { x } } d x , n = 6

Free
(Short Answer)
4.9/5
(27)
Correct Answer:
Verified

0.00008

Evaluate the integral. 7dx(x2+2x+2)2\int \frac { 7 d x } { \left( x ^ { 2 } + 2 x + 2 \right) ^ { 2 } }

(Multiple Choice)
4.8/5
(36)

Find the integral. Select the correct answer. cos5xsin2xdx\int \cos ^ { 5 } x \sin ^ { 2 } x d x

(Multiple Choice)
4.9/5
(33)

Find the integral. 3x5x22x3dx\int \frac { 3 x - 5 } { x ^ { 2 } - 2 x - 3 } d x

(Short Answer)
4.9/5
(43)

Evaluate the integral. 417x216dx\int _ { 4 } ^ { \sqrt { 17 } } \sqrt { x ^ { 2 } - 16 } d x

(Short Answer)
4.8/5
(40)

Evaluate the integral using an appropriate trigonometric substitution. 13x21x4dx\int _ { 1 } ^ { 3 } \frac { \sqrt { x ^ { 2 } - 1 } } { x ^ { 4 } } d x

(Short Answer)
4.9/5
(32)

Find the integral. x3+2x+5(x+1)(x2+1)dx\int \frac { x ^ { 3 } + 2 x + 5 } { ( x + 1 ) \left( x ^ { 2 } + 1 \right) } d x

(Short Answer)
5.0/5
(39)

Let aa and bb be real numbers. What integral must appear in place of the question mark "?" to make the following statement true? a10x2+9dx+a10x2+9dx=?+10x2+9dx\int _ { - \infty } ^ { a } \frac { 10 } { x ^ { 2 } + 9 } d x + \int _ { a } ^ { \infty } \frac { 10 } { x ^ { 2 } + 9 } d x = ? + \int _ { \partial } ^ { \infty } \frac { 10 } { x ^ { 2 } + 9 } d x

(Multiple Choice)
5.0/5
(30)

Evaluate the integral. 013x03dx\int _ { 0 } ^ { 1 } \frac { 3 } { x ^ { 03 } } d x

(Short Answer)
5.0/5
(32)

Estimate the area of the shaded region by using the Trapezoidal Rule with n=2n = 2 . Round the answer to the nearest tenth.  Estimate the area of the shaded region by using the Trapezoidal Rule with  n = 2 . Round the answer to the nearest tenth.

(Short Answer)
4.9/5
(39)

Find the volume of the resulting solid if the region under the curve y=1(x2+3x+2)y = \frac { 1 } { \left( x ^ { 2 } + 3 x + 2 \right) } from x=0x = 0 to x=1x = 1 is rotated about the xx -axis. Round your answer to four decimal places.

(Short Answer)
4.8/5
(29)

The region under the curve y=3sin2x,0xπy = 3 \sin ^ { 2 } x , 0 \leq x \leq \pi is rotated about the xx -axis. Find the volume of the resulting solid.

(Short Answer)
4.8/5
(32)

Use the Table of Integrals to evaluate the integral. e8xsin4xdx\int e ^ { 8 x } \sin 4 x d x

(Short Answer)
4.7/5
(47)

Evaluate the integral. 08(x2+8)exdx\int _ { 0 } ^ { 8 } \left( x ^ { 2 } + 8 \right) e ^ { - x } d x

(Multiple Choice)
4.7/5
(21)

Evaluate the integral. Select the correct answer. 08(x2+8)exdx\int _ { 0 } ^ { 8 } \left( x ^ { 2 } + 8 \right) e ^ { - x } d x

(Multiple Choice)
4.9/5
(42)

Use Simpson's Rule to approximate the integral with answers rounded to four decimal places. 11x2+1dx;n=6\int _ { - 1 } ^ { 1 } \sqrt { x ^ { 2 } + 1 } d x ; \quad n = 6

(Short Answer)
4.7/5
(35)

Evaluate the integral. 20x/2sin3θcos2θdθ2 \int _ { 0 } ^ { x / 2 } \sin ^ { 3 } \theta \cos ^ { 2 } \theta d \theta

(Short Answer)
4.8/5
(33)

Evaluate the integral. 04xx+8dx\int _ { 0 } ^ { 4 } \frac { x } { x + 8 } d x

(Multiple Choice)
4.9/5
(34)
Showing 1 - 20 of 160
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)