Exam 4: Applications of Differentiation

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the indefinite integral. 3x(5x2+3)6dx\int 3 x \left( 5 x ^ { 2 } + 3 \right) ^ { 6 } d x

Free
(Short Answer)
4.7/5
(43)
Correct Answer:
Verified

370(5x2+3)7+C\frac { 3 } { 70 } \left( 5 x ^ { 2 } + 3 \right) ^ { 7 } + C

The marginal cost of manufacturing xx yards of a certain fabric is C(x)=30.01x+0.000006x2C ^ { \prime } ( x ) = 3 - 0.01 x + 0.000006 x ^ { 2 } in dollars per yard. Find the increase in cost if the production level is raised from 1500 yards to 5500 yards.

Free
(Multiple Choice)
5.0/5
(32)
Correct Answer:
Verified

B

Use the Midpoint Rule with n=10n = 10 to approximate the integral. 124+t2dt\int _ { 1 } ^ { 2 } \sqrt { 4 + t ^ { 2 } } d t

Free
(Short Answer)
4.9/5
(39)
Correct Answer:
Verified

2.5107162.510716

Evaluate the definite integral. 11sinx6+x2dx\int _ { - 1 } ^ { 1 } \frac { \sin x } { 6 + x ^ { 2 } } d x

(Short Answer)
4.8/5
(31)

Use the definition of area to find the area of the region under the graph of ff on [a,b][ a , b ] using the indicated choice of ckc _ { k } . f(x)=x2+5x+1,[1,1],ckf ( x ) = x ^ { 2 } + 5 x + 1 , \quad [ - 1,1 ] , \quad c _ { k } is the right endpoint

(Short Answer)
4.7/5
(35)

Find the integral. e2xsin5xdx\int e ^ { 2 x } \sin 5 x d x

(Multiple Choice)
4.8/5
(30)

Evaluate the integral 0π/20etan5xcos25xdx\int _ { 0 } ^ { \pi / 20 } \frac { e ^ { \tan 5 x } } { \cos ^ { 2 } 5 x } d x .

(Multiple Choice)
4.8/5
(42)

Evaluate the integral. 14x2+7xdx\int _ { 1 } ^ { 4 } \frac { x ^ { 2 } + 7 } { \sqrt { x } } d x

(Multiple Choice)
5.0/5
(27)

Find the integral using the indicated substitution. tan5xsec2xdx,u=tanx\int \tan ^ { 5 } x \sec ^ { 2 } x d x , \quad u = \tan x

(Short Answer)
4.8/5
(36)

Evaluate the integral by making the given substitution. x2x3+2dx,u=x3+2\int x ^ { 2 } \sqrt { x ^ { 3 } + 2 } d x , \quad u = x ^ { 3 } + 2

(Short Answer)
4.8/5
(23)

The acceleration function (in m/s2\mathrm { m } / \mathrm { s } ^ { 2 } ) and the initial velocity are given for a particle moving along a line. Find the velocity at time tt and the distance traveled during the given time interval. a(t)=t+4,v(0)=6,0t10a ( t ) = t + 4 , v ( 0 ) = 6,0 \leq t \leq 10

(Short Answer)
4.8/5
(40)

Find the indefinite integral. cot2xcos2xdx\int \frac { \cot ^ { 2 } x } { \cos ^ { 2 } x } d x

(Multiple Choice)
4.8/5
(35)

Find the derivative of the function. g(x)=cosx9xcos(t3)dtg ( x ) = \int _ { \cos x } ^ { 9 x } \cos \left( t ^ { 3 } \right) d t

(Short Answer)
5.0/5
(36)

Approximate the area under the curve y=sinxy = \sin x from 0 to π2\frac { \pi } { 2 } using 8 approximating rectangles of equal widths and right endpoints. The choices are rounded to the nearest hundredth.

(Short Answer)
4.7/5
(39)

Evaluate the integral if it exists. (5xx)2dx\int \left( \frac { 5 - x } { x } \right) ^ { 2 } d x

(Multiple Choice)
4.9/5
(47)

Evaluate the integral. 0x/610+cos2θcos2θ\int _ { 0 } ^ { x / 6 } \frac { 10 + \cos ^ { 2 } \theta } { \cos ^ { 2 } \theta }

(Short Answer)
4.9/5
(40)

The table gives the values of a function obtained from an experiment. Use the values to estimate 06f(w)dw\int _ { 0 } ^ { 6 } f ( w ) d w using three equal subintervals with left endpoints. w 0 1 2 3 4 5 6 f(w) 9.7 9.1 7.7 6.1 4.2 -6.6 -10.3

(Short Answer)
4.8/5
(45)

Find the integral. xsin5xdx\int x \sin 5 x d x

(Short Answer)
5.0/5
(41)

Alabama Instruments Company has set up a production line to manufacture a new calculator. The rate of production of these calculators after tt weeks is dxdt=5700(1130(t+18)2)\frac { d x } { d t } = 5700 \left( 1 - \frac { 130 } { ( t + 18 ) ^ { 2 } } \right) calculators per week. Production approaches 5,700 per week as time goes on, but the initial production is lower because of the workers' unfamiliarity with the new techniques. Find the number of calculators produced from the beginning of the third week to the end of the fourth week. Round the answer to the nearest integer.

(Short Answer)
4.9/5
(40)

Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function. h(x)=1xz2z4+1dzh ( x ) = \int _ { 1 } ^ { \sqrt { x } } \frac { z ^ { 2 } } { z ^ { 4 } + 1 } d z

(Multiple Choice)
5.0/5
(34)
Showing 1 - 20 of 160
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)