Exam 11: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

How many terms of the series m=2126m(lnm)2\sum _ { m = 2 } ^ { \infty } \frac { 12 } { 6 m ( \ln m ) ^ { 2 } } would you need to add to find its sum to within 0.020.02 ?

Free
(Short Answer)
4.7/5
(45)
Correct Answer:
Verified

m>e100m > e ^ { 100 }

Determine whether the geometric series converges or diverges. If it converges, find its sum. 15+1251125+1625- \frac { 1 } { 5 } + \frac { 1 } { 25 } - \frac { 1 } { 125 } + \frac { 1 } { 625 } - \cdots

Free
(Short Answer)
4.8/5
(33)
Correct Answer:
Verified

16- \frac { 1 } { 6 }

Use the binomial series to expand the function as a power series. Find the radius of convergence. x16+x2\frac { x } { \sqrt { 16 + x ^ { 2 } } }

Free
(Short Answer)
4.8/5
(41)
Correct Answer:
Verified

x<4| x | < 4

Determine whether the given series converges or diverges. If it converges, find its sum. n=1(1+5n)n\sum _ { n = 1 } ^ { \infty } \left( 1 + \frac { 5 } { n } \right) ^ { n }

(Short Answer)
4.7/5
(35)

Let ak=f(k)a _ { k } = f ( k ) , where ff is a continuous, positive, and decreasing function on [n,)[ n , \infty ) , and suppose that k=1ak\sum _ { k = 1 } ^ { \infty } a _ { k } is convergent. Defining Rn=SSnR _ { n } = S - S _ { n } , where S=n=1anS = \sum _ { n = 1 } ^ { \infty } a _ { n } and Sn=k=1nakS _ { n } = \sum _ { k = 1 } ^ { n } a _ { k } , we have that n+1f(x)dxRnnf(x)dx\int _ { n + 1 } ^ { \infty } f ( x ) d x \leq R _ { n } \leq \int _ { n } ^ { \infty } f ( x ) d x . Find the maximum error if the sum of the series n=13n2\sum _ { n = 1 } ^ { \infty } \frac { 3 } { n ^ { 2 } } is approximated by S40S _ { 40 } .

(Short Answer)
4.8/5
(35)

When money is spent on goods and services, those that receive the money also spend some of it. The people receiving some of the twice-spent money will spend some of that, and so on. Economists call this chain reaction the multiplier effect. In a hypothetical isolated community, the local government begins the process by spending DD dollars. Suppose that each recipient of spent money spends 100c%100 c \% and saves 100s%100 s \% of the money that he or she receives. The values cc and ss are called the marginal propensity to consume and the marginal propensity to save and, of course, c+s=1c + s = 1 . The number k=1/sk = 1 / s is called the multiplier. What is the multiplier if the marginal propensity to consume is 90%90 \% ? Select the correct answer.

(Multiple Choice)
4.8/5
(35)

A sequenceis {an}\left\{ a _ { n } \right\} defined recursively by the equation an=0.5(an1+an2)a _ { n } = 0.5 \left( a _ { n - 1 } + a _ { n - 2 } \right) for n3n \geq 3 where a1=14,a2=14a _ { 1 } = 14 , a _ { 2 } = 14 . Use your calculator to guess the limit of the sequence.

(Multiple Choice)
4.9/5
(33)

 Determine which series is convergent. \text { Determine which series is convergent. }

(Short Answer)
4.8/5
(35)

Determine whether the series is absolutely convergent, conditionally convergent, or divergent. n=1(1)narctannn4\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } \arctan n } { n ^ { 4 } }

(Essay)
4.9/5
(37)

A sequenceis {an}\left\{ a _ { n } \right\} defined recursively by the equation an=0.5(an1+an2)a _ { n } = 0.5 \left( a _ { n - 1 } + a _ { n - 2 } \right) for n3n \geq 3 where a1=14,a2=14a _ { 1 } = 14 , a _ { 2 } = 14 . Use your calculator to guess the limit of the sequence.

(Short Answer)
4.8/5
(33)

Find the value of the limit for the sequence given. {1917(7n+1)(7n)2}\left\{ \frac { 1 \cdot 9 \cdot 17 \cdots ( 7 n + 1 ) } { ( 7 n ) ^ { 2 } } \right\}

(Multiple Choice)
5.0/5
(33)

Determine whether the geometric series converges or diverges. If it converges, find its sum. n=03n4n+1\sum _ { n = 0 } ^ { \infty } 3 ^ { n } 4 ^ { - n + 1 } Select the correct answer.

(Multiple Choice)
4.9/5
(30)

For which positive integers kk is the series n=1(n!)5(kn)!\sum _ { n = 1 } ^ { \infty } \frac { ( n ! ) ^ { 5 } } { ( k n ) ! } convergent?

(Multiple Choice)
4.8/5
(34)

Find the radius of convergence and the interval of convergence of the power series. n=0(nx6)n\sum _ { n = 0 } ^ { \infty } \left( \frac { n x } { 6 } \right) ^ { n }

(Multiple Choice)
4.7/5
(38)

Find a power series representation for the function. f(y)=ln(11+y11y)f ( y ) = \ln \left( \frac { 11 + y } { 11 - y } \right)

(Short Answer)
4.7/5
(29)

Approximate the sum to the indicated accuracy. n=14(1)n1n7\sum _ { n = 1 } ^ { \infty } \frac { 4 ( - 1 ) ^ { n - 1 } } { n ^ { 7 } } (five decimal places)

(Multiple Choice)
4.8/5
(31)

Determine whether the sequence converges or diverges. If it converges, find the limit. an=en/(n+6)a _ { n } = e ^ { n / ( n + 6 ) }

(Short Answer)
4.7/5
(39)

Find the value of the limit for the sequence given. Select the correct answer. {1917(7n+1)(7n)2}\left\{ \frac { 1 \cdot 9 \cdot 17 \cdots ( 7 n + 1 ) } { ( 7 n ) ^ { 2 } } \right\}

(Multiple Choice)
4.8/5
(35)

Find the interval of convergence of the series. n=1(1)nxnn+3\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } x ^ { n } } { n + 3 }

(Short Answer)
4.9/5
(29)

Evaluate the function f(x)=cosxf ( x ) = \cos x by a Taylor polynomial of degree 4 centered at a=0a = 0 , and x=π4x = \frac { \pi } { 4 } . Select the correct answer.

(Multiple Choice)
4.8/5
(36)
Showing 1 - 20 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)