Exam 4: Applications of Differentiation

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find g(x)g ^ { \prime } ( x ) by evaluating the integral using Part 2 of the Fundamental Theorem and then differentiating. g(x)=xx(6+cost)dtg ( x ) = \int _ { x } ^ { x } ( 6 + \cos t ) d t

(Short Answer)
4.8/5
(44)

Find the integral. sin3xcos6xdx\int \sin ^ { 3 } x \cos ^ { 6 } x d x

(Short Answer)
4.8/5
(30)

The velocity graph of a car accelerating from rest to a speed of 7 km/h7 \mathrm {~km} / \mathrm { h } over a period of 10 seconds is shown. Estimate to the nearest integer the distance traveled during this period. Use a right sum with n=10n = 10 .  The velocity graph of a car accelerating from rest to a speed of  7 \mathrm {~km} / \mathrm { h }  over a period of 10 seconds is shown. Estimate to the nearest integer the distance traveled during this period. Use a right sum with  n = 10 .

(Short Answer)
4.8/5
(40)

If hh ^ { \prime } is a child's rate of growth in pounds per year, which of the following expressions represents the increase in the child's weight (in pounds) between the years 3 and 7 ?

(Multiple Choice)
4.9/5
(35)

 Find the indefinite integral x225x2+25dx\text { Find the indefinite integral } \int \frac { x ^ { 2 } - 25 } { x ^ { 2 } + 25 } d x \text {. } Select the correct answer.

(Multiple Choice)
4.9/5
(47)

Evaluate the integral. π/6π/2sintdt\int _ { \pi / 6 } ^ { \pi / 2 } \sin t d t Select the correct answer.

(Multiple Choice)
4.9/5
(35)

Find the integral. cos5xsin4xdx\int \cos ^ { 5 } x \sin ^ { 4 } x d x

(Short Answer)
4.9/5
(31)

Find the integral using the indicated substitution. tan2xsec2xdx,u=tanx\int \tan ^ { 2 } x \sec ^ { 2 } x d x , \quad u = \tan x Select the correct answer.

(Multiple Choice)
4.8/5
(39)

Find the area of the region that lies under the given curve. Round the answer to three decimal places. y=5x+2,0x1y = \sqrt { 5 x + 2 } , 0 \leq x \leq 1 Select the correct answer.

(Multiple Choice)
4.8/5
(38)

Find the indefinite integral. x2/3x1/32dx\int x ^ { - 2 / 3 } \sqrt { x ^ { 1 / 3 } - 2 } d x

(Multiple Choice)
4.8/5
(36)

Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function. h(x)=1x5z2z4+1dzh ( x ) = \int _ { 1 } ^ { \sqrt { x } } \frac { 5 z ^ { 2 } } { z ^ { 4 } + 1 } d z Select the correct answer.

(Multiple Choice)
4.9/5
(33)

Evaluate ddx0x(earcsint)dt\frac { d } { d x } \int _ { 0 } ^ { x } \left( e ^ { \arcsin t } \right) d t

(Short Answer)
4.8/5
(42)

Find the area of the region under the graph of ff on [a,b][ a , b ] . f(x)=x22x+4;[1,2]f ( x ) = x ^ { 2 } - 2 x + 4 ; \quad [ - 1,2 ] Select the correct answer.

(Multiple Choice)
4.8/5
(28)

Evaluate the indefinite integral. 7ecosxsinxdx\int 7 e ^ { \cos x } \sin x d x

(Short Answer)
4.8/5
(34)

Evaluate the integral if it exists. (5xx)2dx\int \left( \frac { 5 - x } { x } \right) ^ { 2 } d x

(Multiple Choice)
4.8/5
(27)

Use the Midpoint Rule with n=6n = 6 to approximate the integral. Round the answer to 3 decimal places. 0122sintdt\int _ { 0 } ^ { 12 } 2 \sin \sqrt { t } d t

(Short Answer)
4.7/5
(41)

Evaluate the integral by making the given substitution cos3xdx,u=3x\int \cos 3 x d x , u = 3 x

(Short Answer)
4.9/5
(38)

Find the limit. limh01h22+h1+t3dt\lim _ { h \rightarrow 0 } \frac { 1 } { h } \int _ { 2 } ^ { 2 + h } \sqrt { 1 + t ^ { 3 } } d t

(Short Answer)
4.8/5
(32)

Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function. h(x)=1xz2z4+1dzh ( x ) = \int _ { 1 } ^ { \sqrt { x } } \frac { z ^ { 2 } } { z ^ { 4 } + 1 } d z

(Short Answer)
4.8/5
(37)

Evaluate the integral. 01e2x1+e4xdx\int _ { 0 } ^ { 1 } \frac { e ^ { 2 x } } { 1 + e ^ { 4 x } } d x

(Short Answer)
4.7/5
(30)
Showing 41 - 60 of 160
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)