Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Assuming that SS satisfies the conditions of the Divergence Theorem and the scalar functions and components of the vector fields have continuous second order partial derivatives, find s4andS\iint _ { s} 4 \mathbf { a } \cdot \mathbf { n } d S , where a\mathbf { a } is the constant vector.

Free
(Multiple Choice)
4.7/5
(24)
Correct Answer:
Verified

E

The temperature at the point (x,y,z)( x , y , z ) in a substance with conductivity K=4K = 4 is u(x,y,z)=2x2+2y2u ( x , y , z ) = 2 x ^ { 2 } + 2 y ^ { 2 } . Find the rate of heat flow inward across the cylindrical y2+z2=2,0x7y ^ { 2 } + z ^ { 2 } = 2,0 \leq x \leq 7 . Select the correct answer.

Free
(Multiple Choice)
4.8/5
(32)
Correct Answer:
Verified

E

Evaluate Cyzdy+xydz\int _ { C } y z d y + x y d z , where CC is given by x=10t,y=3t,z=10t2,0t1x = 10 \sqrt { t } , y = 3 t , z = 10 t ^ { 2 } , 0 \leq t \leq 1 . Round your answer to two decimal place.

Free
(Multiple Choice)
4.9/5
(35)
Correct Answer:
Verified

B

Find the work done by the force field F\mathbf { F } on a particle that moves along the curve CC . F(x,y)=(5x+5y)i+4xyj;C:r(t)=3t2i+t2j,0t1\mathbf { F } ( x , y ) = ( 5 x + 5 y ) \mathbf { i } + 4 x y \mathbf { j } ; \quad C : \mathbf { r } ( t ) = 3 t ^ { 2 } \mathbf { i } + t ^ { 2 } \mathbf { j } , 0 \leq t \leq 1

(Multiple Choice)
4.8/5
(39)

Use Stoke's theorem to evaluate CFdr,F(x,y,z)=6yx2i+2x3j+6xyk\int _ { C } \mathbf { F } \cdot d \mathbf { r } , \mathbf { F } ( x , y , z ) = 6 y x ^ { 2 } \mathbf { i } + 2 x ^ { 3 } \mathbf { j } + 6 x y \mathbf { k } , CC is the curve of intersection of the hyperbolic paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 } and the cylinder x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 oriented counterclockwise as viewed from above.

(Short Answer)
4.7/5
(35)

Evaluate the line integral. 6yzxds C:x=t,y=t,z=t0\leqt\leq\pi

(Short Answer)
5.0/5
(32)

Use Stokes' Theorem to evaluate ScurFdS\iint _ { S } \operatorname { cur } \mathbf { F } \cdot d \mathbf { S } . F(x,y,z)=9xyi+6yzj+9z2k\mathbf { F } ( x , y , z ) = 9 x y \mathbf { i } + 6 y z \mathbf { j } + 9 z ^ { 2 } \mathbf { k } SS is the part of the ellipsoid 4x2+4y2+49z2=1964 x ^ { 2 } + 4 y ^ { 2 } + 49 z ^ { 2 } = 196 lying above the xyx y -plane and oriented with normal pointing upward.

(Short Answer)
4.9/5
(34)

A plane lamina with constant density ρ(x,y)=12\rho ( x , y ) = 12 occupies a region in the xyx y -plane bounded by a simple closed path CC . Its moments of inertia about the axes are lx=ρ3Cy3dx and ly=ρ3Cx3dyl _ { x } = - \frac { \rho } { 3 } \int _ { C } y ^ { 3 } d x \text { and } l _ { y } = \frac { \rho } { 3 } \int _ { C } x ^ { 3 } d y Find the moments of inertia about the axes, if CC is a rectangle with vertices (0,0),(4,0)( 0,0 ) , ( 4,0 ) , (4,5)( 4,5 ) and (0,5).( 0,5 ) .

(Multiple Choice)
4.8/5
(39)

Find the work done by the force field F\mathbf { F } on a particle that moves along the curve CC . Select the correct answer. F(x,y)=(5x+5y)i+4xyj;C:r(t)=3t2i+t2j,0t1\mathbf { F } ( x , y ) = ( 5 x + 5 y ) \mathbf { i } + 4 x y \mathbf { j } ; \quad C : \mathbf { r } ( t ) = 3 t ^ { 2 } \mathbf { i } + t ^ { 2 } \mathbf { j } , 0 \leq t \leq 1

(Multiple Choice)
4.8/5
(40)

Let SS be the cube with vertices (±1,±1,±1)( \pm 1 , \pm 1 , \pm 1 ) . Approximate Sx2+2y2+7z2\iint _ { S } \sqrt { x ^ { 2 } + 2 y ^ { 2 } + 7 z ^ { 2 } } by using a Riemann sum as in Definition 1, taking the patches SyjS _ { y j } to be the squares that are the faces of the cube and the points PijP _ { i j } to be the centers of the squares.

(Short Answer)
4.9/5
(34)

Determine whether or not vector field is conservative. If it is conservative, find a function ff such that F=f\mathbf { F } = \nabla f . F(x,y,z)=25yze5xxii+5e5xxjj+25xye5xzk\mathbf { F } ( x , y , z ) = 25 y z e ^ { 5 x x _ { i } } \mathbf { i } + 5 e ^ { 5 x x _ { j } } \mathbf { j } + 25 x y e ^ { 5 x z } \mathbf { k }

(Short Answer)
4.8/5
(31)

Let r=xi+yj+zk\mathbf { r } = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } and r=rr = | \mathbf { r } | . Find (r)\nabla \cdot ( \mathbf { r } )

(Short Answer)
4.9/5
(42)

Evaluate Sf(x,y,z)dS\iint _ { S } f ( x , y , z ) d S f(x,y,z)=z;Sf ( x , y , z ) = z ; S is the part of the torus with vector representation r(u,v)=(5+3cosv)cosui+(5+3cosv)sinıj+3sinvk,0u2π,0vπ2.\mathbf { r } ( u , v ) = ( 5 + 3 \cos v ) \cos u \mathbf { i } + ( 5 + 3 \cos v ) \sin \imath \mathbf { j } + 3 \sin v \mathbf { k } , 0 \leq u \leq 2 \pi , 0 \leq v \leq \frac { \pi } { 2 } . Select the correct answer.

(Multiple Choice)
4.8/5
(41)

Show that F\mathbf { F } is conservative and find a function ff such that F=f\mathbf { F } = \nabla f , and use this result to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where CC is any path from A(x0,y0)A \left( x _ { 0 } , y _ { 0 } \right) to B(x1,y1)B \left( x _ { 1 } , y _ { 1 } \right) . F(x,y)=(16xy216xy3)i+(16x2y24x2y2)j;A(1,0)\mathbf { F } ( x , y ) = \left( 16 x y ^ { 2 } - 16 x y ^ { 3 } \right) \mathbf { i } + \left( 16 x ^ { 2 } y - 24 x ^ { 2 } y ^ { 2 } \right) \mathbf { j } ; A ( 1,0 ) and B(1,0)B ( 1,0 )

(Short Answer)
4.9/5
(31)

Let SS be the cube with vertices (±1,±1,±1)( \pm 1 , \pm 1 , \pm 1 ) . Approximate Sx2+2y2+7z2\iint _ { S } \sqrt { x ^ { 2 } + 2 y ^ { 2 } + 7 z ^ { 2 } } by using a Riemann sum as in Definition 1, taking the patches SijS _ { i j } to be the squares that are the faces of the cube and the points PijP _ { i j } to be the centers of the squares.

(Short Answer)
4.7/5
(31)

Find the curl of the vector field. F(x,y,z)=(x9z)i+(7x+y+2z)j+(x16y)k\mathbf { F } ( x , y , z ) = ( x - 9 z ) \mathbf { i } + ( 7 x + y + 2 z ) \mathbf { j } + ( x - 16 y ) \mathbf { k }

(Short Answer)
4.8/5
(37)

Show that F\mathrm { F } is conservative, and find a function ff such that F=f\mathbf { F } = \nabla f , and use the result to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where CC is any curve from A(x0,y0,z0)A \left( x _ { 0 } , y _ { 0 } , z _ { 0 } \right) to B(x1,y1,z1)B \left( x _ { 1 } , y _ { 1 } , z _ { 1 } \right) . F(x,y,z)=8xyi+(4x2+16y3z2)j+8y4zk;A(0,0,0)\mathbf { F } ( x , y , z ) = 8 x y \mathbf { i } + \left( 4 x ^ { 2 } + 16 y ^ { 3 } z ^ { 2 } \right) \mathbf { j } + 8 y ^ { 4 } z \mathbf { k } ; A ( 0,0,0 ) and B(2,2,2)B ( 2 , - 2,2 ) Select the correct answer.

(Multiple Choice)
4.7/5
(34)

Find the area of the part of the surface y=8x+z2y = 8 x + z ^ { 2 } that lies between the planes x=0,x=4,z=0x = 0 , x = 4 , z = 0 , and z=1z = 1 . Select the correct answer.

(Multiple Choice)
4.8/5
(30)

Use Green's Theorem and/or a computer algebra system to evaluate Cx2ydxxy2dy\int _ { C } x ^ { 2 } y d x - x y ^ { 2 } d y , where CC is the circle x2+y2=64x ^ { 2 } + y ^ { 2 } = 64 with counterclockwise orientation.

(Multiple Choice)
4.9/5
(42)

Below is given the plot of a vector field F\mathbf { F } in the xyx y -plane. (The zz -component of F\mathbf { F } is 0 .) By studying the plot, determine whether divF\operatorname { div } \mathbf { F } is positive, negative, or zero.  Below is given the plot of a vector field  \mathbf { F }  in the  x y -plane. (The  z -component of  \mathbf { F }  is 0 .) By studying the plot, determine whether  \operatorname { div } \mathbf { F }  is positive, negative, or zero.

(Multiple Choice)
4.9/5
(32)
Showing 1 - 20 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)