Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the mass of the lamina that occupies the region DD and has the given density function, if DD is bounded by the parabola x=y2x = y ^ { 2 } and the line y=x2y = x - 2 . ρ(x,y)=3\rho ( x , y ) = 3 Select the correct answer.

Free
(Multiple Choice)
4.9/5
(37)
Correct Answer:
Verified

D

Evaluate the integral Bf(x,y,z)dV\iiint _ { B } f ( x , y , z ) d V where f(x,y,z)=xy2+yz2f ( x , y , z ) = x y ^ { 2 } + y z ^ { 2 } and B={(x,y,z)0x2,1y1,0z3}B = \{ ( x , y , z ) \mid 0 \leq x \leq 2 , - 1 \leq y \leq 1,0 \leq z \leq 3 \} with respect to x,yx , y , and zz , in that order Select the correct answer.

Free
(Multiple Choice)
4.7/5
(43)
Correct Answer:
Verified

A

Evaluate the iterated integral by converting to polar coordinates. Round the answer to two decimal places. 3309y2(x2+y2)3/2dxdy.\int _ { - 3 } ^ { 3 } \int _ { 0 } ^ { \sqrt { 9 - y ^ { 2 } } } \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 3 / 2 } d x d y .

Free
(Short Answer)
4.9/5
(26)
Correct Answer:
Verified

152.68152.68

Use the transformation x=2u23v,y=2u+23vx = \sqrt { 2 } u - \sqrt { \frac { 2 } { 3 } } v , y = \sqrt { 2 } u + \sqrt { \frac { 2 } { 3 } } v to evaluate the integral R(x2xy+y2)dA\iint _ { R } \left( x ^ { 2 } - x y + y ^ { 2 } \right) d A , where RR is the region bounded by the ellipse x2xy+y2=2x ^ { 2 } - x y + y ^ { 2 } = 2 .

(Short Answer)
4.8/5
(37)

Find the mass of the solid SS bounded by the paraboloid z=6x2+6y2z = 6 x ^ { 2 } + 6 y ^ { 2 } and the plane z=5z = 5 if SS has constant density 3 .

(Short Answer)
4.9/5
(28)

Use polar coordinates to find the volume of the solid under the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and above the disk x2+y24x ^ { 2 } + y ^ { 2 } \leq 4 . Select the correct answer.

(Multiple Choice)
4.8/5
(27)

Use polar coordinates to find the volume of the solid bounded by the paraboloid z=76x26y2z = 7 - 6 x ^ { 2 } - 6 y ^ { 2 } and the plane z=1z = 1 . Select the correct answer.

(Multiple Choice)
4.8/5
(35)

Find the mass and the moments of inertia Ix,IyI _ { x } , I _ { y } , and I0I _ { 0 } and the radii of gyration xˉ\bar { x } and yˉ\bar { y } for the lamina occupying the region RR , where RR is the region bounded by the graphs of the equations x=2y,x=0x = 2 \sqrt { y } , x = 0 , and y=2y = 2 , and having the mass density ρ(x,y)=xy\rho ( x , y ) = x y .

(Short Answer)
4.9/5
(34)

Use cylindrical coordinates to evaluate the triple integral EydV\iiint _ { E } y d V where EE is the solid that lies between the cylinders x2+y2=3x ^ { 2 } + y ^ { 2 } = 3 and x2+y2=7x ^ { 2 } + y ^ { 2 } = 7 above the xyx y -plane and below the plane z=x+4z = x + 4 .

(Short Answer)
4.8/5
(33)

Calculate the iterated integral. Round your answer to two decimal places. 06034x+4ydxdy\int _ { 0 } ^ { 6 } \int _ { 0 } ^ { 3 } \sqrt { 4 x + 4 y } d x d y

(Multiple Choice)
4.8/5
(38)

Use the given transformation to evaluate the integral. RxydA\iint _ { R } x y d A , where RR is the region in the first quadrant bounded by the lines y=x,y=3xy = x , y = 3 x and the hyperbolas xy=2,xy=4;x=uv,y=vx y = 2 , x y = 4 ; x = \frac { u } { v } , y = v .

(Multiple Choice)
4.8/5
(31)

Find the area of the surface SS where SS is the part of the sphere x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 that lies inside the cylinder x24x+y2=0x ^ { 2 } - 4 x + y ^ { 2 } = 0 .

(Short Answer)
4.8/5
(27)

Use cylindrical coordinates to evaluate Bx2+y2dV\iiint _ { B } \sqrt { x ^ { 2 } + y ^ { 2 } } d V where EE is the region that lies inside the cylinder x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 and between the planes z=3z = - 3 and z=5z = 5 . Round the answer to two decimal places.

(Short Answer)
4.9/5
(27)

Use a double integral to find the area of the region RR where RR is bounded by the circle r=8sinθr = 8 \sin \theta . Select the correct answer.

(Multiple Choice)
4.7/5
(26)

Use spherical coordinates. Evaluate B(x2+y2+z2)2dV\iiint _ { B } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 2 } d V , where BB is the ball with center the origin and radius 4 .

(Multiple Choice)
4.9/5
(39)

Calculate the double integral. Round your answer to two decimal places. RxyeydA,R={(x,y)0x3,0y3}\iint _ { R } x y e ^ { y } d A , R = \{ ( x , y ) \mid 0 \leq x \leq 3,0 \leq y \leq 3 \}

(Short Answer)
5.0/5
(33)

Describe the region whose area is given by the integral. 0x/40cos2θ2rdrdθ\int _ { 0 } ^ { x / 4 } \int _ { 0 } ^ { \cos 2 \theta } 2 r d r d \theta

(Essay)
5.0/5
(37)

Find the mass of a solid hemisphere of radius 5 if the mass density at any point on the solid is directly proportional to its distance from the base of the solid.

(Short Answer)
4.7/5
(38)

The sketch of the solid is given below. Given a=7a = 7 , write the inequalities that describe it.  The sketch of the solid is given below. Given  a = 7 , write the inequalities that describe it.

(Multiple Choice)
5.0/5
(36)

Use cylindrical coordinates to evaluate the triple integral EydV\iiint _ { E } y d V where EE is the solid that lies between the cylinders x2+y2=3x ^ { 2 } + y ^ { 2 } = 3 and x2+y2=7x ^ { 2 } + y ^ { 2 } = 7 above the xyx y -plane and below the plane z=x+4z = x + 4 . Select the correct answer.

(Multiple Choice)
4.9/5
(36)
Showing 1 - 20 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)