Exam 6: Applications of Integration

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Calculate g(x)g ( x ) , where g=f1g = f ^ { - 1 } . State the domain and range of gg . Calculate gt(a)g ^ { t } ( a ) . f(x)=1x3,x>3;a=2f ( x ) = \frac { 1 } { x - 3 } , x > 3 ; a = 2

(Multiple Choice)
4.9/5
(38)

 Suppose g is the inverse function of a differentiable function f and G(x)=1g(x)\text { Suppose } g \text { is the inverse function of a differentiable function } f \text { and } G ( x ) = \frac { 1 } { g ( x ) } \text {. }  If f(4)=3 and ft(4)=116, find Gt(3)\text { If } f ( 4 ) = 3 \text { and } f ^ { t } ( 4 ) = \frac { 1 } { 16 } \text {, find } G ^ { t } ( 3 )

(Short Answer)
4.9/5
(33)

Find the inverse of ff . Then sketch the graphs of ff and f1f ^ { - 1 } on the same set of axes. f(x)=16x2,x0f ( x ) = \sqrt { 16 - x ^ { 2 } } , x \geq 0

(Multiple Choice)
4.8/5
(32)

Use Newton's method to find the roots of the equation correct to five decimal places. Select the correct answer. xlnx1=0x \ln x - 1 = 0

(Multiple Choice)
4.9/5
(38)

 Find yt if lnxy=2ysinx\text { Find } y ^ { t } \text { if } \ln x y = 2 y \sin x

(Short Answer)
4.7/5
(38)

Differentiate the function. Select the correct answer. g(x)=lnxx+4g ( x ) = \frac { \ln x } { x + 4 }

(Multiple Choice)
4.7/5
(38)

Find the limit. limx0+ln5xx\lim _ { x \rightarrow 0 ^ { + } } \frac { \ln 5 x } { x }

(Short Answer)
4.9/5
(45)

A lighthouse is located on a small island, 3 km3 \mathrm {~km} away from the nearest point PP on a straight shoreline, and its light makes four revolutions per minute. How fast is the beam of light moving along the shoreline when it is 1 km1 \mathrm {~km} from PP ? Select the correct answer.

(Multiple Choice)
4.9/5
(35)

Find the points of intersection of the graphs of the functions. Express your answers accurate to five decimal places. f(x)=0.2x21.8x3.8;g(x)=0.1x2+0.8x+6.7f ( x ) = 0.2 x ^ { 2 } - 1.8 x - 3.8 ; g ( x ) = - 0.1 x ^ { 2 } + 0.8 x + 6.7

(Short Answer)
4.8/5
(36)

Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line. y=lnx,y=1,y=5,x=0; about the y axis y = \ln x , y = 1 , y = 5 , x = 0 ; \text { about the } y - \text { axis }

(Short Answer)
4.8/5
(42)

Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line. y=lnx,y=1,y=5,x=0y = \ln x , y = 1 , y = 5 , x = 0 ; about the yy - axis

(Short Answer)
4.9/5
(37)

Solve each equation for xx . (a) lnx=4\ln x = 4 (b) eex=7e ^ { e ^ { x } } = 7

(Short Answer)
4.9/5
(36)

Evaluate the integral to three decimal places. e8dxxlnx\int _ { e } ^ { 8 } \frac { d x } { x \ln x }

(Multiple Choice)
4.8/5
(33)

Write the expression in algebraic form. sec(sin18x)\sec \left( \sin ^ { - 1 } 8 x \right)

(Short Answer)
4.8/5
(33)

Use the laws of logarithms to write the expression as the logarithm of a single quantity. 4ln334ln(x+3)4 \ln 3 - \frac { 3 } { 4 } \ln ( x + 3 )

(Multiple Choice)
4.9/5
(40)

Evaluate the integral to three decimal places. e8dxxlnx\int _ { e } ^ { 8 } \frac { d x } { x \ln x }

(Short Answer)
4.8/5
(33)

Write the expression as an exponent with base ee . 7sinx7 ^ { \sin x } .

(Short Answer)
4.8/5
(40)

Evaluate the integral. 02ex1+e2xdx\int _ { 0 } ^ { 2 } \frac { e ^ { x } } { 1 + e ^ { 2 x } } d x

(Short Answer)
4.8/5
(31)

Suppose that the graph of y=log2xy = \log _ { 2 } x is drawn on a coordinate grid where the unit of measurement is an inch. How many miles to the right of the origin do we have to move before the height of the curve reaches 2ft2 \mathrm { ft } .

(Short Answer)
4.9/5
(34)

 Find the exponential function f(x)=bax whose graph is given. \text { Find the exponential function } f ( x ) = b a ^ { x } \text { whose graph is given. } \text { Find the exponential function } f ( x ) = b a ^ { x } \text { whose graph is given. }

(Short Answer)
4.9/5
(34)
Showing 121 - 140 of 157
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)