Exam 8: Further Applications of Integration

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the area of the surface obtained by revolving the given curve about the xx -axis. y=ex+ex2 on [0,ln4]y = \frac { e ^ { x } + e ^ { - x } } { 2 } \text { on } [ 0 , \ln 4 ]

(Short Answer)
4.8/5
(39)

Set up, but do not evaluate, an integral for the length of the curve. y=6exsinx,0x9π2y = 6 e ^ { x } \sin x , \quad 0 \leq x \leq \frac { 9 \pi } { 2 }

(Multiple Choice)
4.9/5
(31)

Find the centroid of the region bounded by the graphs of the given equations. y=15x2,y=3xy = 15 - x ^ { 2 } , \quad y = 3 - x

(Short Answer)
4.9/5
(29)

Find the centroid of the region bounded by the graphs of the given equations. y=10x2,y=22xy = 10 - x ^ { 2 } , \quad y = 2 - 2 x

(Multiple Choice)
4.9/5
(37)

Find the area of the surface obtained by rotating the curve about the yy -axis. y=14x212lnx,1x8y = \frac { 1 } { 4 } x ^ { 2 } - \frac { 1 } { 2 } \ln x , 1 \leq x \leq 8

(Short Answer)
4.8/5
(43)

Write an integral giving the arc length of the graph of the equation from P\mathbf { P } to Q\mathbf { Q } . y=1x2+2;P(1,13),Q(3,111)y = \frac { 1 } { x ^ { 2 } + 2 } ; \mathrm { P } \left( 1 , \frac { 1 } { 3 } \right) , \mathrm { Q } \left( 3 , \frac { 1 } { 11 } \right)

(Short Answer)
4.9/5
(39)

The standard deviation for a random variable with probability density function ff and mean μ\mu is defined σ=[(xμ)2f(x)dx]1/2\sigma = \left[ \int _ { - \infty } ^ { \infty } ( x - \mu ) ^ { 2 } f ( x ) d x \right] ^ { 1 / 2 } Find the standard deviation for an exponential density function with mean 10.10 .

(Multiple Choice)
4.9/5
(47)

The demand function for a commodity is given by p=2,0000.1x0.01x2.p = 2,000 - 0.1 x - 0.01 x ^ { 2 } . Find the consumer surplus when the sales level is 75 .

(Short Answer)
4.9/5
(36)

Use the arc length formula to find the length of the curve. y=53x,7x3y = 5 - 3 x , - 7 \leq x \leq - 3

(Short Answer)
5.0/5
(47)

Use differentials to approximate the arc length of the graph of the equation from P\mathbf { P } to Q\mathbf { Q } . Round answer to four decimal places. Select the correct answer. y=x2+3;P(3,12),Q(3.2,13.24)y = x ^ { 2 } + 3 ; \quad \mathrm { P } ( 3,12 ) , \quad \mathrm { Q } ( 3.2,13.24 )

(Multiple Choice)
4.7/5
(44)

Find the centroid of the region bounded by the graphs of the given equations. y=x2/3,y=0,x=8y = x ^ { 2 / 3 } , \quad y = 0 , \quad x = 8

(Short Answer)
4.9/5
(36)

 Find the centroid of the region shown in the figure. \text { Find the centroid of the region shown in the figure. } \text { Find the centroid of the region shown in the figure. }

(Short Answer)
4.9/5
(41)

Find the length of the curve. Select the correct answer. x=y48+14y2,1y3x = \frac { y ^ { 4 } } { 8 } + \frac { 1 } { 4 y ^ { 2 } } , 1 \leq y \leq 3

(Multiple Choice)
4.8/5
(35)

Find the centroid of the region bounded by the given curves. Select the correct answer. y=8sin5x,y=0,x=0,x=π5y = 8 \sin 5 x , y = 0 , x = 0 , x = \frac { \pi } { 5 }

(Multiple Choice)
4.7/5
(33)

Use differentials to approximate the arc length of the graph of the equation from P\mathbf { P } to Q\mathbf { Q } . Round answer to four decimal places. y=x3+3;P(1,4),Q(1.2,4.728)y = x ^ { 3 } + 3 ; \mathrm { P } ( 1,4 ) , \quad \mathrm { Q } ( 1.2,4.728 )

(Short Answer)
4.9/5
(45)

Find the length of the curve. y=16(x2+4)3/2,0x3y = \frac { 1 } { 6 } \left( x ^ { 2 } + 4 \right) ^ { 3 / 2 } , 0 \leq x \leq 3

(Multiple Choice)
4.8/5
(37)

A trough is filled with a liquid of density 855 kg/m3855 \mathrm {~kg} / \mathrm { m } ^ { 3 } . The ends of the trough are equilateral triangles with sides 7 m7 \mathrm {~m} long and vertex at the bottom. Find the hydrostatic force on one end of the trough.

(Multiple Choice)
4.9/5
(36)

The marginal cost function C(x)C ^ { \prime } ( x ) is defined to be the derivative of the cost function. If the marginal cost of manufacturing xx units of a product is C(x)=0.009x21.8x+9C ^ { \prime } ( x ) = 0.009 x ^ { 2 } - 1.8 x + 9 (measured in dollars per unit) and the fixed start-up cost is C(0)=2,200,000C ( 0 ) = 2,200,000 , use the Total Change Theorem to find the cost of producing the first 5,000 units.

(Multiple Choice)
4.9/5
(38)

For a given commodity and pure competition, the number of units produced and the price per unit are determined as the coordinates of the point of intersection of the supply and demand curves. Given the demand curve p=60x20p = 60 - \frac { x } { 20 } and the supply curve p=30+x30,p = 30 + \frac { x } { 30 } , find the consumer surplus.

(Short Answer)
4.8/5
(43)

Use the Theorem of Pappus to find the volume of the solid obtained by revolving the region bounded by the graphs of y=16x2,y=16y = 16 - x ^ { 2 } , y = 16 , and x=4x = 4 about the yy -axis.

(Multiple Choice)
5.0/5
(39)
Showing 21 - 40 of 160
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)