Exam 5: Exponential and Logarithmic Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Write 5ln(x+7)3lnx4ln(x2+8)5 \ln ( x + 7 ) - 3 \ln x - 4 \ln \left( x ^ { 2 } + 8 \right) as a single logarithm with a coefficient of 1. Assume all variable expressions represent positive real numbers.

(Multiple Choice)
5.0/5
(29)

Find the domain of the function k(x)=log8(4x)k ( x ) = \log _ { 8 } ( 4 - x ) .

(Multiple Choice)
4.9/5
(33)

Sketch the graph of the function N(t)=2etN ( t ) = 2 - e ^ { t }

(Multiple Choice)
4.9/5
(22)

Rewrite the logarithmic equation log6136=2\log _ { 6 } \frac { 1 } { 36 } = - 2 in exponential form.

(Multiple Choice)
4.7/5
(34)

Solve for x: 5x/3=0.00525 ^ { - x / 3 } = 0.0052 . Round to 3 decimal places.

(Multiple Choice)
4.9/5
(34)

Find the inverse function of the function f given by the set of ordered pairs. {(6,2),(5,3),(4,4),(3,5)}\{ ( 6,2 ) , ( 5,3 ) , ( 4,4 ) , ( 3,5 ) \}

(Multiple Choice)
4.8/5
(24)

Sketch the graph of the function y=3x2y = 3 ^ { - x ^ { 2 } } .

(Multiple Choice)
4.8/5
(40)

Expand the given logarithmic expression. Assume all variable expressions represent positive real numbers. ln(x7/4y3/2)\ln \left( x ^ { 7 / 4 } y ^ { 3 / 2 } \right)

(Multiple Choice)
4.9/5
(37)

Use the functions given by f(x)=x+4f ( x ) = x + 4 and g(x)=2x6g ( x ) = 2 x - 6 to find the composition of functions (gf)1(g\circ f)^{-1}

(Multiple Choice)
4.8/5
(33)

Solve (12)x=8\left( \frac { 1 } { 2 } \right) ^ { x } = 8 for x.

(Multiple Choice)
4.9/5
(32)

Show that ff and gg are functions by using the definition of inverse functions. f(x)=5x+1,g(x)=x15f ( x ) = 5 x + 1 , g ( x ) = \frac { x - 1 } { 5 }

(Multiple Choice)
4.8/5
(26)

Determine whether the function has an inverse function, If it does, find its inverse function. f(x)=x4f ( x ) = x ^ { 4 }

(Multiple Choice)
5.0/5
(36)

Show that ff and gg are functions by using the definition of inverse functions. f(x)=1x,g(x)=1xf ( x ) = \frac { 1 } { x } , g ( x ) = \frac { 1 } { x }

(Multiple Choice)
4.8/5
(28)

What is the half-life of a radioactive substance if 3.4 g decays to 0.80 g in 75 hours? Round to the nearest tenth of an hour.

(Multiple Choice)
4.9/5
(34)
Showing 81 - 94 of 94
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)