Exam 9: Logarithmic and Exponential Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate using the change-of-base formula. Round to four decimal places. - log38\log 38

(Multiple Choice)
4.8/5
(40)

f(x)=ex+3+1f(x)=e^{x+3}+1

(Multiple Choice)
4.7/5
(32)

Determine whether the functions f(x)f(x) and g(x)g(x) are inverse functions. - f(x)=9x+72,g(x)=19x8f(x)=9 x+72, g(x)=\frac{1}{9} x-8

(True/False)
4.8/5
(38)

Determine the equation of the horizontal asymptote for the graph of this function, and state the domain and range of this function. - f(x)=5x21f(x)=5^{x-2}-1

(Multiple Choice)
4.8/5
(31)

The area betw een the graph of f(x)=exf(x)=e^{x} and the xx -axis on an interval [a,b][a, b] is equal to ebeae^{b}-e^{a} . Sketch the graph of f(x)=exf(x)=e^{x} , and shade the area between the graph and the xx -axis. Find the shaded area, rounded to the nearest hundredth. - [0,2.5][0,2.5]  The area betw een the graph of  f(x)=e^{x}  and the  x -axis on an interval  [a, b]  is equal to  e^{b}-e^{a} . Sketch the graph of  f(x)=e^{x} , and shade the area between the graph and the  x -axis. Find the shaded area, rounded to the nearest hundredth. - [0,2.5]

(Multiple Choice)
4.7/5
(35)

Determine whether the functions f(x)f(x) and g(x)g(x) are inverse functions. - f(x)=5x,g(x)=5xf(x)=5 x, g(x)=-5 x

(True/False)
4.8/5
(30)

For the given function f(x)f(x) , find f1(x)f^{-1}(x) . State the domain of f1(x)f^{-1}(x) . - f(x)=(x+16)25(x16)f(x)=(x+16)^{2}-5(x \geq-16)

(Multiple Choice)
4.8/5
(41)

Evaluate. Round to the nearest thousandth, if necessary. - log0.001\log 0.001

(Multiple Choice)
5.0/5
(29)

Evaluate. Round to the nearest thousandth, if necessary. - ln(e9)\ln \left(\mathrm{e}^{-9}\right)

(Multiple Choice)
4.8/5
(44)

Rewrite in terms of two or more logarithms using the quotient and product rules for logarithms. Assume all variables represent positive real numbers. - log3(xy3)\log _{3}\left(\frac{x y}{3}\right)

(Multiple Choice)
4.9/5
(36)

Graph a one-to-one function f(x) that meets the given criteria. - f(x)f(x) is a linear function, f(9)=5f(-9)=5 , and f1(2)=8f^{-1}(-2)=-8 .  Graph a one-to-one function f(x) that meets the given criteria. - f(x)  is a linear function,  f(-9)=5 , and  f^{-1}(-2)=-8 .

(Multiple Choice)
4.7/5
(31)

A fixed point of a function f(x)f(x) is a value for which f(x)=xf(x)=x . For the given function, find: a) Fixed point of f(x)f(x) b) (f f)(x)\circ f)(\mathbf{x}) c) Fixed point of (f f)(x)\circ\mathbf{f})(\mathbf{x}) - f(x)=2x5f(x)=2 x-5

(Multiple Choice)
4.8/5
(40)

For the given functions f(x)f(x) and g(x)g(x) , find (fg)(x)(f \cdot g)(x) or (fg)(x)\left(\frac{f}{g}\right)(x) as indicated. - f(x)=x2+2x15,g(x)=x+5f(x)=x^{2}+2 x-15, g(x)=x+5 Find (fg)(x)\left(\frac{f}{g}\right)(x) .

(Multiple Choice)
4.9/5
(43)

Solve. - 273x=142^{7-3 x}=\frac{1}{4}

(Multiple Choice)
4.9/5
(31)

Find the specified domain -For f(x)=x21f(x)=x^{2}-1 and g(x)=2x+3g(x)=2 x+3 , what is the domain of fgf \circ g ?

(Multiple Choice)
4.7/5
(28)

Solve the equation. - log9(x5)+log9(x5)=1\log _{9}(\mathrm{x}-5)+\log _{9}(\mathrm{x}-5)=1

(Multiple Choice)
4.8/5
(28)

Determine the equation of the horizontal asymptote for the graph of this function, and state the domain and range of thisfunction. - f(x)=(13)x4f(x)=\left(\frac{1}{3}\right)^{x}-4

(Multiple Choice)
4.7/5
(24)

Determine the equation of the vertical asymptote for the graph of this function, and state the domain and range of this function. - f(x)=log(5x4)13f(x)=\log (5 x-4)-13

(Multiple Choice)
4.7/5
(45)

Rewrite as a single logarithm using the quotient rule for logarithms. Assume all variables represent positive real numbers. - logx12logx2\log _{\mathrm{x}} 12-\log _{\mathrm{x}} 2

(Multiple Choice)
4.8/5
(29)

Solve the problem. -Find the hydrogen ion concentration of a solution [H+]\left[\mathrm{H}^{+}\right] whose pH\mathrm{pH} is 7.3. Use the formula pH=log[H+]\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] .

(Multiple Choice)
4.8/5
(31)
Showing 361 - 380 of 404
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)