Exam 9: Logarithmic and Exponential Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Determine whether the functions f(x)f(x) and g(x)g(x) are inverse functions. - f(x)=6x+42,g(x)=16(x42)f(x)=6 x+42, g(x)=\frac{1}{6}(x-42)

(True/False)
4.8/5
(35)

Graph. State the domain, range, and vertical asymptote of the function - f(x)=log(x+4)+2f(x)=\log (x+4)+2  Graph. State the domain, range, and vertical asymptote of the function - f(x)=\log (x+4)+2

(Multiple Choice)
4.9/5
(52)

For the given function f(x)f(x) , find its inverse. - f(x)=ln(x+3)+8f(x)=\ln (x+3)+8

(Multiple Choice)
4.8/5
(34)

Find all intercepts for the given function. Round to the nearest tenth if necessary. - f(x)=e(x+2)4f(x)=e^{(x+2)}-4

(Multiple Choice)
4.8/5
(31)

Find the missing number. Round to the nearest hundredth if necessary. - 20?=8920^ ?=89

(Multiple Choice)
4.9/5
(33)

Rewrite as the sum of two or more logarithms using the product rule for logarithms. A ssume all variables represent positive real numbers. - log2(xy)\log _{2}(\mathrm{xy})

(Multiple Choice)
4.8/5
(33)

Rew rite as a single logarithm. A ssume all variables represent positive real numbers. - 3logatlogas3 \log _{a} t-\log _{a} s

(Multiple Choice)
4.8/5
(34)

Determine whether the graph is the graph of a function. -Determine whether the graph is the graph of a function. -

(True/False)
4.9/5
(28)

Graph. State the domain, range, and horizontal asymptote of the function - f(x)=(15)x+4f(x)=\left(\frac{1}{5}\right)^{x}+4  Graph. State the domain, range, and horizontal asymptote of the function - f(x)=\left(\frac{1}{5}\right)^{x}+4

(Multiple Choice)
4.9/5
(33)

Graph a one-to-one function f(x) that meets the given criteria. - f(x)f(x) is a quadratic function, the domain of f(x)f(x) is restricted to [2,),f1(9)=2,f1(8)=3[2, \infty), f^{-1}(-9)=2, f^{-1}(-8)=3 , and f1(5)=4\mathrm{f}^{-1}(-5)=4 .  Graph a one-to-one function f(x) that meets the given criteria. - f(x)  is a quadratic function, the domain of  f(x)  is restricted to  [2, \infty), f^{-1}(-9)=2, f^{-1}(-8)=3 , and  \mathrm{f}^{-1}(-5)=4 .

(Multiple Choice)
4.9/5
(41)

Solve. - log3x=5\log 3 x=5

(Multiple Choice)
4.8/5
(32)

Rewrite in logarithmic form - 3x=303^{\mathrm{x}}=30

(Multiple Choice)
4.9/5
(36)

Find the specified domain -For f(x)=5x+2f(x)=5 \sqrt{x+2} and g(x)=4x+18g(x)=4 x+18 , what is the domain of fgf \circ g ?

(Multiple Choice)
4.8/5
(28)

For the given graph of a one-to-one function f(x), graph its inverse functionf-1(x) using a dashed line - For the given graph of a one-to-one function f(x), graph its inverse functionf-1(x) using a dashed line -

(Multiple Choice)
4.8/5
(37)

Rewrite using the pow er and product rules. Assume all variables represent positive real numbers. - lnx2y4z3\ln x^{2} y^{4} z^{3}

(Multiple Choice)
4.8/5
(31)

Solve. - log2(2x+8)=log2(2x+3)\log _{2}(2 x+8)=\log _{2}(2 x+3)

(Multiple Choice)
4.8/5
(35)

Expand. A ssume that all variables represent positive real numbers. - log5(x3y93)\log _{5}\left(\frac{\mathrm{x}^{3} \mathrm{y}^{9}}{3}\right)

(Multiple Choice)
4.8/5
(35)

For the given function f(x)f(x) , find f1(x)f^{-1}(x) and graph the function and its inverse. - f(x)=5xf(x)=5^{x}  For the given function  f(x) , find  f^{-1}(x)  and graph the function and its inverse. - f(x)=5^{x}

(Multiple Choice)
4.9/5
(31)

Graph f(x). State the domain, range, and horizontal asymptote of the function - f(x)=(15)x+1f(x)=\left(\frac{1}{5}\right)^{x+1}  Graph f(x). State the domain, range, and horizontal asymptote of the function - f(x)=\left(\frac{1}{5}\right)^{x+1}

(Multiple Choice)
4.8/5
(33)

Graph f(x). State the domain, range, and horizontal asymptote of the function - f(x)=(13)x2+1f(x)=\left(\frac{1}{3}\right)^{x-2}+1  Graph f(x). State the domain, range, and horizontal asymptote of the function - f(x)=\left(\frac{1}{3}\right)^{x-2}+1

(Multiple Choice)
4.8/5
(40)
Showing 61 - 80 of 404
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)